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1 Introduction
A wide range of problems, such as combinatorial optimization, constraint satisfaction
problem, image matching, genetic sequence similarity, iterative optimization methods,
etc., can be reduced to tree or graph exploration problems [3, 1, 4]. A pattern common
in such algorithms to solve these problems is a eureka event, a point in the program
which announces that a result has been found. Such an event usually curtails com-
putation time by avoiding further exploration of the solution space or by causing the
termination of the computation. If no eureka event occurs, the “eureka-style” compu-
tation completes when all operations in the algorithm have completed. Eureka-Style
Computations (EuSCs) include search and optimization problems that could benefit
greatly from speculative parallelism. The focus of this work is to implement a parallel
EuSC, namely Jacobi2D, in CnC.

2 Convergence Iterations and Determinism
Iterative methods refer to a wide range of techniques that use successive approxima-
tions to obtain more accurate solutions to a linear system at each step [5]. Examples of
iterative methods include the Jacobi method, Gauss-Seidel method and the Successive
over-relaxation method. An iterative method is called convergent if the corresponding
sequence converges for given initial approximations. Speculatively parallelizing an it-
erative algorithm results in creating tasks for computations of future iterations. The
Jacobi2D stencil computation [6] is used to add support for the iterative convergence
eureka to CnC. Inherently such computations are non-deterministic, but we can make
convergent eureka computations deterministic by using Branch and Bound (BnB) al-
gorithms.
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BnB is a widely used tool for solving large scale NP-hard combinatorial optimiza-
tion problems [2]. A BnB algorithm searches the complete space of solutions for a
given problem for the best solution. Subproblems are derived from the originally given
problem through the addition of new constraints. An objective function computes the
lower/upper bounds for each subproblem. The upper bound is the worst value for the
potential optimal solution, the lower bound is the best value. The entire tree maintains
a global upper bound (GUB): this is the best upper bound of all nodes. Nodes with a
lower bound higher than the GUB are eliminated from the tree because branching these
sub-problems will not lead to the optimal solution. In many practical cases, the amount
of pruning that occurs in this type of BnB algorithm can be immense.

3 Jacobi2D CnC Application
Jacobi2D is an iterative 5-point two dimensional stencil computation (Figure 1a). The
update function computes the arithmetic mean of a cell’s four neighbors (top, left,
bottom, and right). In this case we set off with an initial solution of 0. The left and
right boundary are fixed at 1, while the upper and lower boundaries are set to 0. After
a sufficient number of iterations, the system converges. Listing 1 shows the algorithm
we use.

Listing 1: Jacobi2D Stencil Computation.

2 D = ... // initial input

4 var converged = false
5 while (!converged) {

7 // stencil computation
8 for (x in 1 to N) {
9 for (y in 1 to N) {

10 P(x, y) = 0.25 * (D(x, y-1) + D(x-1, y) + D(x, y+1) + D(x+1, y))
11 } }

13 // convergence check
14 delta = 0
15 for (x in 1 to N) {
16 for (y in 1 to N) {
17 delta = max(delta, P(x, y)
18 } }
19 if (delta < epsilon) {
20 converged = true
21 }

23 D = P
24 }

Figure 1b shows the data dependencies for individual cells and these can be used
to create the kernel of an iteration in CnC. Using the data dependencies it is easy to
come up with the get counts for each cell (shown in Figure 1c). A CnC application
of Jacobi2D contains of (a) a step to launch the body of an individual iteration, (b)
a step to compute individual (or a chunk) of stencils, and (c) a step to perform the
convergence check and determine when the application can terminate. Previous CnC
implementations of Jacobi2D use one of two strategies:
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(a)5-point 2D stencil. (b)Data dependences.
(c)Get counts.

Figure 1: Data dependences and get counts for 5-point stencil.

• Approach-1: avoid the convergence check and instead run the algorithm for a
fixed number of iterations to provide the determinism guarantee, or

• Approach-2: perform the convergence at the end of each iteration before spawn-
ing the steps to perform the stencil computation of the next iteration.

Approach-1 is limiting as it cannot guarantee that convergence will be reached in a
pre-specified number of iterations. Approach-2 is limiting as there is now an implicit
barrier at the end of each iteration that limits the speculative parallelism in the applica-
tion by preventing steps from the future iterations to start.

We believe the convergence check is an orthogonal concern and should not interfere
with the main parallelism in the application – computing the stencils in each iteration.
Our approach is to allow future iterations to start computing the stencils as soon as
their dependences are satisfied. The convergence check runs independently when its
data become available and can trigger the eureka event that signals the computation to
terminate. The BnB strategy is used to terminate (cancel) steps from future iterations
only and allow in-flight steps from previous iterations to continue executing and also
triggering eurekas. This approach allows us to detect the earliest iteration that triggered
a eureka and thus produce a deterministic value. Note: Due to time constraints, our
current implementation does have a maximum iteration limit, but such a limit is not
actually required as look-ahead iterations can be progressively spawned, the eureka
will ensure we terminate all redundant steps.
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