1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
//! This crate will help you to write simpler tests by leveraging a software testing concept called //! [test fixtures](https://en.wikipedia.org/wiki/Test_fixture#Software). A fixture is something //! that you can use in your tests to encapsulate a test's dependencies. //! //! The general idea is to have smaller tests that only describe the thing you're testing while you //! hide the auxiliary utilities your tests make use of somewhere else. //! For instance, if you have an application that has many tests with users, shopping baskets, and //! products, you'd have to create a user, a shopping basket, and product every single time in //! every test which becomes unwieldy quickly. In order to cut down on that repetition, you can //! instead use fixtures to declare that you need those objects for your function and the fixtures //! will take care of creating those by themselves. Focus on the important stuff in your tests! //! //! In `rstest` a fixture is a function that can return any kind of valid Rust type. This //! effectively means that your fixtures are not limited by the kind of data they can return. //! A test can consume an arbitrary number of fixtures at the same time. //! //! ## What //! //! The `rstest` crate defines the following procedural macros: //! //! - [`[rstest]`](rstest): Declare that a test or a group of tests that may take //! [fixtures](attr.rstest.html#injecting-fixtures), //! [input table](attr.rstest.html#test-parametrized-cases) or //! [list of values](attr.rstest.html#values-lists). //! - [`[fixture]`](fixture): To mark a function as a fixture. //! //! ## Why //! //! Very often in Rust we write tests like this //! //! ``` //! #[test] //! fn should_process_two_users() { //! let mut repository = create_repository(); //! repository.add("Bob", 21); //! repository.add("Alice", 22); //! //! let processor = string_processor(); //! processor.send_all(&repository, "Good Morning"); //! //! assert_eq!(2, processor.output.find("Good Morning").count()); //! assert!(processor.output.contains("Bob")); //! assert!(processor.output.contains("Alice")); //! } //! ``` //! //! By making use of [`[rstest]`](rstest) we can isolate the dependencies `empty_repository` and //! `string_processor` by passing them as fixtures: //! //! ``` //! # use rstest::*; //! #[rstest] //! fn should_process_two_users(mut empty_repository: impl Repository, //! string_processor: FakeProcessor) { //! empty_repository.add("Bob", 21); //! empty_repository.add("Alice", 22); //! //! string_processor.send_all("Good Morning"); //! //! assert_eq!(2, string_processor.output.find("Good Morning").count()); //! assert!(string_processor.output.contains("Bob")); //! assert!(string_processor.output.contains("Alice")); //! } //! ``` //! //! ... or if you use `"Alice"` and `"Bob"` in other tests, you can isolate `alice_and_bob` fixture //! and use it directly: //! //! ``` //! # use rstest::*; //! # trait Repository { fn add(&mut self, name: &str, age: u8); } //! # struct Rep; //! # impl Repository for Rep { fn add(&mut self, name: &str, age: u8) {} } //! # #[fixture] //! # fn empty_repository() -> Rep { //! # Rep //! # } //! #[fixture] //! fn alice_and_bob(mut empty_repository: impl Repository) -> impl Repository { //! empty_repository.add("Bob", 21); //! empty_repository.add("Alice", 22); //! empty_repository //! } //! //! #[rstest] //! fn should_process_two_users(alice_and_bob: impl Repository, //! string_processor: FakeProcessor) { //! string_processor.send_all("Good Morning"); //! //! assert_eq!(2, string_processor.output.find("Good Morning").count()); //! assert!(string_processor.output.contains("Bob")); //! assert!(string_processor.output.contains("Alice")); //! } //! ``` //! //! ## Injecting fixtures as function arguments //! //! `rstest` functions can receive fixtures by using them as input arguments. //! A function decorated with [`[rstest]`](attr.rstest.html#injecting-fixtures) //! will resolve each argument name by call the fixture function. //! Fixtures should be annotated with the [`[fixture]`](fixture) attribute. //! //! Fixtures will be resolved like function calls by following the standard resolution rules. //! Therefore, an identically named fixture can be use in different context. //! //! ``` //! # use rstest::*; //! # trait Repository { } //! # #[derive(Default)] //! # struct DataSet {} //! # impl Repository for DataSet { } //! mod empty_cases { //! # use rstest::*; //! # trait Repository { } //! # #[derive(Default)] //! # struct DataSet {} //! # impl Repository for DataSet { } //! use super::*; //! //! #[fixture] //! fn repository() -> impl Repository { //! DataSet::default() //! } //! //! #[rstest] //! fn should_do_nothing(repository: impl Repository) { //! //.. test impl .. //! } //! } //! //! mod non_trivial_case { //! # use rstest::*; //! # trait Repository { } //! # #[derive(Default)] //! # struct DataSet {} //! # impl Repository for DataSet { } //! use super::*; //! //! #[fixture] //! fn repository() -> impl Repository { //! let mut ds = DataSet::default(); //! // Fill your dataset with interesting case //! ds //! } //! //! #[rstest] //! fn should_notify_all_entries(repository: impl Repository) { //! //.. test impl .. //! } //! } //! //! ``` //! //! Last but not least, fixtures can be injected like we saw in `alice_and_bob` example. //! //! ## Creating parametrized tests //! //! You can use also [`[rstest]`](attr.rstest.html#test-parametrized-cases) to create //! simple table-based tests. Let's see the classic Fibonacci example: //! //! ``` //! use rstest::rstest; //! //! #[rstest(input, expected, //! case(0, 0), //! case(1, 1), //! case(2, 1), //! case(3, 2), //! case(4, 3), //! case(5, 5), //! case(6, 8) //! )] //! fn fibonacci_test(input: u32, expected: u32) { //! assert_eq!(expected, fibonacci(input)) //! } //! //! fn fibonacci(input: u32) -> u32 { //! match input { //! 0 => 0, //! 1 => 1, //! n => fibonacci(n - 2) + fibonacci(n - 1) //! } //! } //! ``` //! This will generate a bunch of tests, one for every `case()`. //! //! ## Creating a test for each combinations of given values //! //! In some cases you need to test your code for each combinations of some input values. In this //! cases [`[rstest]`](attr.rstest.html#values-lists) give you the ability to define a list //! of values (rust expressions) to use for an arguments. //! //! ``` //! # use rstest::rstest; //! # #[derive(PartialEq, Debug)] //! # enum State { Init, Start, Processing, Terminated } //! # #[derive(PartialEq, Debug)] //! # enum Event { Error, Fatal } //! # impl State { fn process(self, event: Event) -> Self { self } } //! //! #[rstest( //! state => [State::Init, State::Start, State::Processing], //! event => [Event::Error, Event::Fatal] //! )] //! fn should_terminate(state: State, event: Event) { //! assert_eq!(State::Terminated, state.process(event)) //! } //! ``` //! //! This will generate a test for each combination of `state` and `event`. //! #![cfg_attr(use_proc_macro_diagnostic, feature(proc_macro_diagnostic))] extern crate proc_macro; // Test utility module #[cfg(test)] pub(crate) mod test; mod error; mod parse; mod refident; mod render; mod resolver; mod utils; use syn::{parse_macro_input, ItemFn}; use crate::parse::{fixture::FixtureInfo, rstest::RsTestInfo}; /// Define a fixture that you can use in all `rstest`'s test arguments. You should just mark your /// function as `[fixture]` and then use it as a test's argument. Fixture functions can also /// use other fixtures. /// /// Let's see a trivial example: /// /// ``` /// use rstest::*; /// /// #[fixture] /// fn twenty_one() -> i32 { 21 } /// /// #[fixture] /// fn two() -> i32 { 2 } /// /// #[fixture] /// fn injected(twenty_one: i32, two: i32) -> i32 { twenty_one * two } /// /// #[rstest] /// fn the_test(injected: i32) { /// assert_eq!(42, injected) /// } /// ``` /// /// # Default values /// /// If you need to define argument default value you can use the `name=expression` /// syntax in fixture attribute: /// /// ``` /// use rstest::*; /// /// #[fixture(twenty_one=21, two=2)] /// fn injected(twenty_one: i32, two: i32) -> i32 { twenty_one * two } /// /// #[rstest] /// fn the_test(injected: i32) { /// assert_eq!(42, injected) /// } /// ``` /// The `expression` could be any valid rust expression, even an `async` block if you need. /// /// # Partial Injection /// /// You can also partialy inject fixture dependency simply indicate dependency value as fixture /// argument: /// /// ``` /// use rstest::*; /// /// #[fixture] /// fn base() -> i32 { 1 } /// /// #[fixture] /// fn first(base: i32) -> i32 { 1 * base } /// /// #[fixture] /// fn second(base: i32) -> i32 { 2 * base } /// /// #[fixture(second(-3))] /// fn injected(first: i32, second: i32) -> i32 { first * second } /// /// #[rstest] /// fn the_test(injected: i32) { /// assert_eq!(-6, injected) /// } /// ``` /// Note that injected value can be an arbitrary rust expression. /// /// Sometimes the return type cannot be infered so you must define it: For the few times you may /// need to do it, you can use the `default<type>`, `partial_n<type>` attribute syntax to define it: /// /// ``` /// use rstest::*; /// # use std::fmt::Debug; /// /// #[fixture] /// pub fn i() -> u32 { /// 42 /// } /// /// #[fixture] /// pub fn j() -> i32 { /// -42 /// } /// /// #[fixture(::default<impl Iterator<Item=(u32, i32)>>::partial_1<impl Iterator<Item=(I,i32)>>)] /// pub fn fx<I, J>(i: I, j: J) -> impl Iterator<Item=(I, J)> { /// std::iter::once((i, j)) /// } /// /// #[rstest] /// fn resolve_by_default<I: Debug + PartialEq>(mut fx: impl Iterator<Item=I>) { /// assert_eq!((42, -42), fx.next().unwrap()) /// } /// /// #[rstest(fx(42.0))] /// fn resolve_partial<I: Debug + PartialEq>(mut fx: impl Iterator<Item=I>) { /// assert_eq!((42.0, -42), fx.next().unwrap()) /// } /// ``` /// `partial_i` is the fixture used when you inject the first `i` arguments in test call. #[proc_macro_attribute] pub fn fixture( args: proc_macro::TokenStream, input: proc_macro::TokenStream, ) -> proc_macro::TokenStream { let info: FixtureInfo = parse_macro_input!(args as FixtureInfo); let fixture = parse_macro_input!(input as ItemFn); let errors = error::fixture(&fixture, &info); if errors.is_empty() { render::fixture(fixture, info).into() } else { errors } .into() } /// The attribute that you should use for your tests. Your /// annotated function's arguments can be /// [injected](attr.rstest.html#injecting-fixtures) with /// [`[fixture]`](fixture)s, provided by /// [parametrized cases](attr.rstest.html#test-parametrized-cases) /// or by [value lists](attr.rstest.html#values-lists). /// /// ## General Syntax /// /// `rstest` attribute can be applied to _any_ function and you can costumize its /// parameters by the follow syntax /// /// ```text /// rstest( /// arg_1, /// ..., /// arg_n[,] /// [::attribute_1[:: ... [::attribute_k]]] /// ) /// ``` /// Where: /// /// - `arg_i` could be one of the follow /// - `ident` that match to one of function arguments /// (see [parametrized cases](#test-parametrized-cases) for more details) /// - `case[::description](v1, ..., vl)` a test case /// (see [parametrized cases](#test-parametrized-cases) for more details) /// - `fixture(v1, ..., vl)` where fixture is one of function arguments /// that and `v1, ..., vl` is a partial list of fixture's arguments /// (see [injecting fixtures](#injecting-fixtures)] for more details) /// - `ident => [v1, ..., vl]` where `ident` is one of function arguments and /// `v1, ..., vl` is a list of values for ident (see [value lists](#values-lists) /// for more details) /// - `attribute_j` a test [attribute](#attributes) /// /// Function's arguments can be present just once as case identity, fixture or value list. /// /// Your test function can use generics, `impl` or `dyn` and like any kind of rust tests: /// /// - return results /// - marked by `#[should_panic]` attribute /// /// If the test function is an [`async` function](#async) `rstest` will run all tests as `async` /// tests. You can use it just with `async-std` and you should include `attributes` in /// `async-std`'s features. /// /// ## Injecting Fixtures /// /// The simplest case is write a test that can be injected with /// [`[fixture]`](fixture)s. You can just declare all used fixtures by passing /// them as a function's arguments. This can help your test to be neat /// and make your dependecy clear. /// /// ``` /// use rstest::*; /// /// #[fixture] /// fn injected() -> i32 { 42 } /// /// #[rstest] /// fn the_test(injected: i32) { /// assert_eq!(42, injected) /// } /// ``` /// /// [`[rstest]`](rstest) proc_macro will desugar it to something that isn't /// so far from /// /// ``` /// #[test] /// fn the_test() { /// let injected=injected(); /// assert_eq!(42, injected) /// } /// ``` /// /// Sometimes is useful to have some parametes in your fixtures but your test would /// override the fixture's default values in some cases. Like in /// [fixture partial injection](attr.fixture.html#partial-injection) you can indicate some /// fixture's arguments also in `rstest`. /// /// ``` /// # struct User(String, u8); /// # impl User { fn name(&self) -> &str {&self.0} } /// use rstest::*; /// /// #[fixture(name="Alice", age=22)] /// fn user(name: impl AsRef<str>, age: u8) -> User { User(name.as_ref().to_owned(), age) } /// /// #[rstest(user("Bob"))] /// fn check_user(user: User) { /// assert_eq("Bob", user.name()) /// } /// ``` /// /// ## Test Parametrized Cases /// /// If you would execute your test for a set of input data cases /// you can define the arguments to use and the cases list. Let see /// the classical Fibonacci example. In this case we would give the /// `input` value and the `expected` result for a set of cases to test. /// /// ``` /// use rstest::rstest; /// /// #[rstest(input, expected, /// case(0, 0), /// case(1, 1), /// case(2, 1), /// case(3, 2), /// case(4, 3), /// )] /// fn fibonacci_test(input: u32, expected: u32) { /// assert_eq!(expected, fibonacci(input)) /// } /// /// fn fibonacci(input: u32) -> u32 { /// match input { /// 0 => 0, /// 1 => 1, /// n => fibonacci(n - 2) + fibonacci(n - 1) /// } /// } /// ``` /// /// `rstest` will produce a 5 indipendent tests and not just one that /// check every case. Every test can fail indipendently and `cargo test` /// will give follow output: /// /// ```text /// running 5 tests /// test fibonacci_test::case_1 ... ok /// test fibonacci_test::case_2 ... ok /// test fibonacci_test::case_3 ... ok /// test fibonacci_test::case_4 ... ok /// test fibonacci_test::case_5 ... ok /// /// test result: ok. 5 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out /// ``` /// /// The cases input values can be arbitrary Rust expresions that return the /// argument type. /// /// ``` /// use rstest::rstest; /// /// fn sum(a: usize, b: usize) -> usize { a + b } /// /// #[rstest(s, len, /// case("foo", 3), /// case(String::from("foo"), 2 + 1), /// case(format!("foo"), sum(2, 1)), /// )] /// fn test_len(s: impl AsRef<str>, len: usize) { /// assert_eq!(s.as_ref().len(), len); /// } /// ``` /// /// ### Optional case description /// /// Optionally you can give a _description_ to every case simple by follow `case` /// with `::my_case_description` where `my_case_description` should be a a valid /// Rust ident. /// /// ```text /// #[rstest(input, expected, /// case::zero_base_case(0, 0), /// case::one_base_case(1, 1), /// case(2, 1), /// case(3, 2), /// )] /// ``` /// /// Outuput will be /// ```text /// running 4 tests /// test fibonacci_test::case_1_zero_base_case ... ok /// test fibonacci_test::case_2_one_base_case ... ok /// test fibonacci_test::case_3 ... ok /// test fibonacci_test::case_4 ... ok /// /// test result: ok. 4 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out /// ``` /// /// ### Use specific `case` attributes /// /// Every function's attributes that follow the `rstest` one will /// used in tests but you can also define a `case`'s attributes set. /// This feature can be use to mark just some cases as `should_panic` /// and chose to have a fine grain on expected panic messages. /// /// In follow example we run 3 tests where the first pass without any /// panic, in the second we catch a panic but we don't care about the message /// and in the third one we also check the panic message. /// /// ``` /// use rstest::rstest; /// /// #[rstest( /// val, /// case::no_panic(0), /// #[should_panic] /// case::panic(1), /// #[should_panic(expected="expected")] /// case::panic_with_message(2), /// )] /// fn attribute_per_case(val: i32) { /// match val { /// 0 => assert!(true), /// 1 => panic!("No catch"), /// 2 => panic!("expected"), /// _ => unreachable!(), /// } /// } /// ``` /// /// Output: /// /// ```text /// running 3 tests /// test attribute_per_case::case_1_no_panic ... ok /// test attribute_per_case::case_3_panic_with_message ... ok /// test attribute_per_case::case_2_panic ... ok /// /// test result: ok. 3 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out /// ``` /// /// ## Values Lists /// /// Another useful way to write a test and execute it for some values /// is to use the values list syntax. This syntax can be usefull both /// for a plain list and for testing all combination of input arguments. /// /// ``` /// # use rstest::*; /// # fn is_valid(input: &str) -> bool { true } /// /// #[rstest(input => ["Jhon", "alice", "My_Name", "Zigy_2001"])] /// fn should_be_valid(input: &str) { /// assert!(is_valid(input)) /// } /// ``` /// /// or /// /// ``` /// # use rstest::*; /// # fn valid_user(name: &str, age: u8) -> bool { true } /// /// #[rstest( /// name => ["J", "A", "A________________________________________21"], /// age => [14, 100], // Maybe more than 100 is an error or joke /// )] /// fn should_accept_all_corner_cases(name: &str, age: u8) { /// assert!(valid_user(name, age)) /// } /// ``` /// where `cargo test` output is /// /// ```text /// running 6 tests /// test should_accept_all_corner_cases::name_1::age_1 ... ok /// test should_accept_all_corner_cases::name_3::age_1 ... ok /// test should_accept_all_corner_cases::name_3::age_2 ... ok /// test should_accept_all_corner_cases::name_2::age_1 ... ok /// test should_accept_all_corner_cases::name_2::age_2 ... ok /// test should_accept_all_corner_cases::name_1::age_2 ... ok /// /// test result: ok. 6 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out /// ``` /// ## Async /// /// `rstest` provides out of the box `async` support. Just mark your /// test function as `async` and it'll use `#[async-std::test]` to /// annotate it. This feature can be really useful to build async /// parametric tests using a tidy syntax: /// /// ``` /// use rstest::*; /// # async fn async_sum(a: u32, b: u32) -> u32 { a + b } /// /// #[rstest(expected, a, b, /// case(5, 2, 3), /// #[should_panic] /// case(42, 40, 1) /// )] /// async fn my_async_test(expected: u32, a: u32, b: u32) { /// assert_eq!(expected, async_sum(a, b).await); /// } /// ``` /// /// Currently, you cannot write async `#[fixture]` and only `async-std` is /// supported out of the box. But if you need to use another runtime /// that provide it's own test attribute (i.e. `tokio::test` or `actix_rt::test`) /// you can use it in your `async` test like described in [Inject Test Attribute](attr.rstest.html#inject-test-attribute). /// /// To use this feature, you need to enable `attributes` in the `async-std` /// features list in your `Cargo.toml`: /// /// ```toml /// async-std = { version = "1.5", features = ["attributes"] } /// ``` /// /// ## Inject Test Attribute /// /// If you would like to use another `test` attribute for your test you can simply /// indicate it in your test function's attributes. For instance if you want /// to test some async function with use `actix_rt::test` attribute you can just write: /// /// ``` /// use rstest::*; /// use actix_rt; /// use std::future::Future; /// /// #[rstest(a, result, /// case(2, async { 4 }), /// case(21, async { 42 }) /// )] /// #[actix_rt::test] /// async fn my_async_test(a: u32, result: impl Future<Output=u32>) { /// assert_eq!(2 * a, result.await); /// } /// ``` /// Just the attributes that ends with `test` (last path segment) can be injected. /// /// ## Putting all Together /// /// All these features can be used together with a mixture of fixture variables, /// fixed cases and bunch of values. For instance, you might need two /// test cases which test for panics, one for a logged in user and one for a guest user. /// /// ```rust /// # enum User { Guest, Logged, } /// # impl User { fn logged(_n: &str, _d: &str, _w: &str, _s: &str) -> Self { Self::Logged } } /// # struct Item {} /// # trait Repository { fn find_items(&self, user: &User, query: &str) -> Result<Vec<Item>, String> { Err("Invalid query error".to_owned()) } } /// # #[derive(Default)] struct InMemoryRepository {} /// # impl Repository for InMemoryRepository {} /// /// use rstest::*; /// /// #[fixture] /// fn repository() -> InMemoryRepository { /// let mut r = InMemoryRepository::default(); /// // fill repository with some data /// r /// } /// /// #[fixture] /// fn alice() -> User { /// User::logged("Alice", "2001-10-04", "London", "UK") /// } /// /// #[rstest(user, /// case::authed_user(alice()), // We can use `fixture` also as standard function /// case::guest(User::Guest), // We can give a name to every case : `guest` in this case /// query => [" ", "^%$#@!", "...." ] /// )] /// #[should_panic(expected = "Invalid query error")] // We whould test a panic /// fn should_be_invalid_query_error(repository: impl Repository, user: User, query: &str) { /// repository.find_items(&user, query).unwrap(); /// } /// ``` /// /// ## Attributes /// ### Trace Input Arguments /// /// Sometimes can be very helpful to print all test's input arguments. To /// do it you can use the `trace` parameter. /// /// ``` /// use rstest::*; /// /// #[fixture] /// fn injected() -> i32 { 42 } /// /// #[rstest(::trace)] /// fn the_test(injected: i32) { /// assert_eq!(42, injected) /// } /// ``` /// /// Will print an output like /// /// ```bash /// Testing started at 14.12 ... /// ------------ TEST ARGUMENTS ------------ /// injected = 42 /// -------------- TEST START -------------- /// /// /// Expected :42 /// Actual :43 /// ``` /// If you want to trace input arguments but skip some of them that don't /// implement the `Debug` trait, you can also use the /// `notrace(list, of, inputs)` attribute: /// /// ``` /// # use rstest::*; /// # struct Xyz; /// # struct NoSense; /// #[rstest(::trace::notrace(xzy, have_no_sense))] /// fn the_test(injected: i32, xyz: Xyz, have_no_sense: NoSense) { /// assert_eq!(42, injected) /// } /// ``` #[proc_macro_attribute] pub fn rstest( args: proc_macro::TokenStream, input: proc_macro::TokenStream, ) -> proc_macro::TokenStream { let test = parse_macro_input!(input as ItemFn); let info = parse_macro_input!(args as RsTestInfo); let errors = error::rstest(&test, &info); if errors.is_empty() { if info.data.has_list_values() { render::matrix(test, info) } else if info.data.has_cases() { render::parametrize(test, info) } else { render::single(test, info) } } else { errors } .into() }