AUTODESK"

{\ AUTODESK.

EASILY APPLICABLE GRAPHICAL LAYOUT EDITOR

User Language

Version 9.2.0

Copyright © 2018 Autodesk

All rights reserved

EAGLE User Language — Version 9.2.0

Table of Contents

USER LANGUAGE ...ttt sttt st ssss s ssssssssssasssssssssessesasssssnssnssnt sutsnssnssnssnssns 15
WRITING A ULP ...ttt st st st st st st sssssssssssssssssssssssssssssssssssnsssssntsnssst st ssssnssssssssnes 15
EXECUTING A ULP.....uuiiiiiiiniiiininintiiitst ittt sttt ssssssssassssssssssssssssssssssssesstssssssssssnssst st sssssssnsssssses 16
R0 40 . . 16
A2 5 LU DY . X 16
L0017 117 0 DA 17
DIRECTIVES ...ttt sttt st st st st s s s s ss s s s sbssas s s s s sae st satsatsatsatsntsatsntsntsatsnssns 17
E:3 00O 0 D) O RR 18

o) N £ 51 10 0 (O TN 18
3 28 D0 1 8] 2 O 18
2 01 X O 18

N 2 5 S 19
KEYWORDS ...ttt sttt st st s sss s s ssss s s s e sbssas s s ssssaessesaesnesatsntsntsatsntsntsnsssssnssnsaness 19
L1101 DI\ N0 0 D 20
00)0 I I 20
CHARACTER CONSTANTSooiiiiiiiiiiiientiistsstsssssssssssssssssessssssssessssssssssssssssssssssstssssssnssnsssssnsssssnsss 20
INTEGER CONSTANTS ..ottt sttt st ssssassssssssssssssssssssssssessssnsssssnssnssns st snssnssnsssssnes 21

N 2 5 TN 21
REAL CONSTANTS ...ttt sttt st st sss st st ssas s ssassasssssasssesaessesstsnssnesntsnssntsussnssnssnssnssns 21

N 2 5 TN 21
STRING CONSTANTS ..ottt ittt sttt sss s s sss s s st sse s sss s e s sae s st sae st st sae st satsatsatsassnbenees 22
ESCAPE SEQUENCES ...ttt ittt sttt st ssssssssssssssssssssssssssssssesssssssssssssnssns st snssnssnsssssnes 22

N 2 5 PPN 22
o 0 0. N A0) L 23
33 20 N0 (D 1 O 23
PARENTHESES ...ttt sttt st sss s sss s s sas s s s s st saesae st st s st satsatsntsatsnssns 23
33 30 N 0 D S 23
L0710)7 1L . 23
100 DALY 0 (0.2 70) 24
L0710) L0) 24
L D0 0, N D (€ 24
10 TN 1N 4 i 24
L] 5 1. N 25
0 25
2 D N 25
RO 2 10 25

IMPLEMENTATION DETALLScuttttrtetetesestatatestsssseseseseststatsssssseseseseseststatssssssesesesesesentssssssesesesesesestssssssssesesesens 26

EAGLE User Language — Version 9.2.0

TYPE CONVERSIONS ... tciiitiiiiiiitttetttteeaseessssssessseteeesesssnsssssssses 26
TY PECAST .ooiiiiiiiiitiieeeeeterereeeeteeteeteeesssnnnnnssssses 26
OBJECT TYPES ... eeeeerrcriiiiiinitetteeeeeeassesssssssssssseessnnssssssssss 27
OBIJECT HIERARCHY OF A LIBRARYtttiiriieeieiiiitreeeeeeeeeiesisteereeeseeesesstssseeseessesssssssesesssssssssssssssesssensssssesseeses 28
OBJECT HIERARCHY OF A SCHEMATIC: ...uvvvertieeeeiiiitrereeeeeeeiesisssereeeseeessssssssesseessemsssssssessssssmsssssssssesssemsssssssseesens 29
Change note from version 5 to version 6, COMPALIDILILYc..eeecueeecueersiieesieesieesieesieesieessieessiesssiaessiees 29
OBIJECT HIERARCHY OF A BOARD:ccottitiiiiii ettt eee e e ettt e e eeestbaee e e e e e e seenaabaaseeesesessstsaaeeeeessennssraneeeeens 29

| 6] . N 2 PPN 30
CONSTANTS eitieeetetttreeeeeeeeeeiitbereeeeeeesasbaraereeeeseasasbraseeesesesasissssassaeseeanassbasseeseeesanssstsaseeeseeesasssssasesesesenssssranseeeens 30
31 = 30
N1, 0 2) 30
ULL_AREA ... eeecittteeeceetteeeneeetteesssesseesnssesssesnsssessessssssssssenssssssssssssssssssnssssssesnsssssssesnnssssssssnsssssssnnnsssssannn 31
N1, 0 2 5 31
UL_ATTRIBUTE ... eeeiiiiteeiieettteereereenenneetteensssesseesssssssesssssssssssssssssssssssssssssssssssssssassssssssssssssssssnnsssssssns 31
CONSTANTS eiiieeeietttreeeeeeeeeeiitrereeeeeeesaassssaereeeeseasasbaasaeeseeesassssssassaeseeasassbassaeseessanssssaseeeseeesasssasseesesssenssssraneeeeens 31
31 = 32
N1, 0 2 5 32

L) D 310 7. N 33) U 32
CONSTANTS eitieeetetttreeeeeeeeeeiitbereeeeeeesasbaraereeeeseasasbraseeesesesasissssassaeseeanassbasseeseeesanssstsaseeeseeesasssssasesesesenssssranseeeens 33
31 = 33
N1, 0 2 5 33
UL _BUS i iitiiiiiitiitteeeeeeeeiseseeeetttteeteessssssssssssssssssssssssessssssssssssssssssssssssssssssesssssnssnsssssssssssssssssssssssssssnnnsssssssns 34
CONSTANTS oeieieeeietttreeeeeeeteeiitrereeeeeeesasbssaereeesseasasbrasseeseeesassssssasseesseanassbasseeseessansssssaseeeseeesasssssaseeesesenssssraneeeeens 34
N1, 0 2) 34
ULL_CTIRCLE ... ctteieittteeeeetteeeseeetteensseessesssssssesssssesseessnssssssssssssssssssnssssssssnn 34
N1, 0 2 5 34
UL L_CLASS oo etttettteeetrrrereeeetttteettessassessssssnsssssssssssssssssssssssesssssnnnsnsssssns 34
31 = 35
N1, 0 2 5 35

1) 00)11 17 N O U 35
CONSTANTS eeeieeeietttreeeeeeeeeeiitrereeeeeeesasbssaereeesseasasbrassaaseeesasssssassaeseeanassbassasseessanssssaseeeseeesasssssaeeseessenssssranseeeens 35
31 = 35
N1, 0 2) 36

18 P00)04 17 04 1 24 D (R 36
CONSTANTS eeeieeeietttreeeeeeeeeeiitrereeeeeeesasbssaereeesseasasbrassaaseeesasssssassaeseeanassbassasseessanssssaseeeseeesasssssaeeseessenssssranseeeens 36
31 = 36
N1, 0 2 5 36
ULL_DEVICE.....eeiiiitteieiiieeeeeeetteensseessensssesssesssssesseessnssssssssssssssssssnssssssssns 36
CONSTANTS tiiieeeietttreeeeeeeeeeiitrereeeeeeesaassssaereeeseeaaasbrasseesesesasssssassaeseeanassbassaeseessanssssaseeeseeesasstssaeesesssenssssraneeeeens 37
31 = 37
N1, 0 2 59 21 38

8 0 D) DAV 03 D D RN 38
CONSTANTS eiieeeeiettureeeeeeeeeeiitrereeeeeeesaasssaereaeeseasasbrassaesesesasssssassaeseeanassbasseeseessanssssaseeeeeeesasssasseeeesesenasssranseeeens 39
31 = 39
N1, 0 2) 39

EAGLE User Language — Version 9.2.0

ULL_DIMENSIONcetttiiiieieiiitiitteeteeeesssssssssssssssssssssessnsssssssses 40
CONSTANTS eiieeeeiettureeeeeeeeeeiitrereeeeeeesaasssaereaeeseasasbrassaesesesasssssassaeseeanassbasseeseessanssssaseeeeeeesasssasseeeesesenasssranseeeens 40
31 = 40
N1, 0 2) 40

UL_ELEMENT ... ittteiieiittteiieetteenseeeeennssestesssssesseessnsssssssssnssssssssnsssssssens 41
CONSTANTS eieieeeietttreeeeeeeteeiitrereeeeeeesaabssaereaeesessassrassaeseeesasssssaassaeseeanassbasseeseessanssstsaseseseeesasssssseesesesenssssraneeeeens 41
31 = 41
N1, 0 2 5 20 42

UL_ERRORcctttttteeeetiireieeiettttteetessanssssssssss 42
CONSTANTS tiieeeeietttreeeeeeeeeeiitrereeeeeeesasbsraereeesseasasbsasaeesesesassssssassaeseeanasssasseeseessansssssaseeeseeesasstasaseeesssenssssranseeeens 43
31 = 43
N1, 0 2) 43

UL_FRAME......citttttteeeuiriieieiieiitteettessnnssssssssns 44
CONSTANTS eiiieeeietttreeeeeeeeeeiitrereeeeeeesasbasaereeessessasbaasseesesesasssssaassaesseanasssassesseessansssssaseeeseeesasstasseesesesenssssraneeeeens 44
31 = 44
N1, 0 2 5 45

L) D7 N0 U 45
CONSTANTS etieeeeietttreeeeeeeteeiitbereeeeeeesasisssaereaeeseasasbrasseasesesasassssassaeseeanassbasseeseeesansssssaseeeseeesasssasaeaeeeesenssssranseeeens 45
31 = 45
N1, 0 2) 45

| 81 €3 23 1 D PPN 45
CONSTANTS eiieeeeietttreeeeeeeeeeiitrereeeeeeesaabssaereeeeseasasbaasseaseeesassssaasseeseeesasssassesseessasssssaseeeseeesasstssssesesesenssssranseeeens 46
31 = 46
N1, 0 2 5 46

L) D 5 6.2 53 U 46
31 = 46
N1, 0 2 5 46

ULL_INSTANC Eoeeeeeerrriieeinitittteteeeessssssssssssssssssssseessnnssnsssssss 47
CONSTANTS tiieeeeietttreeeeeeeeeeiitbereeeeeeesaasssaereeeeseasasbrassaesesesasssssaassaesseasassbasseeseessasssssaseeeseeesasssasaeesesssenssssranseeeens 47
31 = 47
N1, 0 2) 48

ULL_JUNCTIONccttteeuuuerrreeeeeeereeeeteessesssnsssssssssns 48
N1, 0 2) 48

| 8] D 57 31 D) DTN 48
31 = 49
N1, 0 2 5 49

| 6] D 57N 4 1 2 PPN 49
CONSTANTS eeeieeeietttreeeeeeeeeeiitrereeeeeeesasbssaereeesseasasbrassaaseeesasssssassaeseeanassbassasseessanssssaseeeseeesasssssaeeseessenssssranseeeens 49
N1, 0 2 5 50

UL_LIBRARY coteeiiiiitteieetieeeeieetteenseeseennsseessesssssesseessnsssssssssnssssssssnssssssssnn 50
CONSTANTS tieeeeeietttreeeeeeeeeeiitrereeeeeeesaassreereeesseasasbrasaaasesesassssaasseesseanassbasseeseessanssssaseeeseeesasstssaeesesssenssssraneeeeens 51
31 = 51
B A P LE 1 ttttuneertueerenereresueeerssneeresnessssneesssnsessnnsesssneesssnsesssnsessssnsesssnsesssnsessssneesssneessssneesssneesssnesessnnsersseesssnneensnnne 51

UL_MODULE .. 52
B A P LE 1 ttttutertuneeruunreresueerssneesesasessssneesssneeessnnsesssnsesssnesesssnsersssssesssnsesssnsessssneesssnsesssnneesssneesssnesessnnsersseesssnneensnnne 52

EAGLE User Language — Version 9.2.0

UL PINREEF ..coiiiiiiiiiiiiiiiiiiiieennnntttettiiiiisiiiiiissseessssssttettiiiiisiiiiiisssssessssssttttiiiiiieiiiiissssssssmttitiimiesis 62
B X AP L 1+ teeettuuuunseeereresnnnseseeersesnnneeeessassnnssseeersessnnsseeessssssnsnsesessssssnnsseessnsssnnnseeessssssnnsseessesssssnseeesensssnnseseessssnnnnrees 62
102 P30 =03 ') 63
(@) =T 28 = 63
N O E teeteeetttuuueseeeeereuuuaeeeeereennaeseeeesansnnssseearsesnnnseeesssssnnsnseeesssssnnnsesesssssnnsnsesessssssnnsesessssssnsnsseessensnnnseseessesnnnneeenens 63
POLYGON T IDTH tevtuuuuereeereessnnnsseeseessssnasesesssssssssseeesssssssnsesesssssssssssesesssssnnsasessssssssnsesessssssnsaseeessssssnasesessssssnseseeeeees 63
PARTIAL POLYGONS tuereeereeuuuussseeeesesssnaseserssssnnssssessssssssnseseessssssssssesssssssnnsaseessssssssasesessssssnnasesersssssnssesessssssnseseeeeens 64
0= TR 64
102 P30 =03 2 65
(@) = 728 = 65
N O E teeteeetetuuueseeeeereeunaeeeeereennaeeeeeeransnnsseearsesnnnssasessnssnnsnseeesssssnnnsesessssssnsnsesessesssnnsesessssssnsnsseessensnnnseseensesnnnnneeerens 65
0= ST 65
UL_PORTREF .. 65
B X AP L 1+ tevettuuuuuseeererennnnseseeersesnsneeesssassnnsseeersessnnsseeesnssssssnsesessssssnssssessssssnsnseeessssssnnsseessnsssssnseeesenssnnnseseesssnnnnnrens 66
UL_RECTANGLE ... 66
B X AP L 1+t eeettuuuuneeererannnneseeeresnnnnseeeeesassnnssseeersessnnssseessssssssnsesessssssnnsseessnsssnsnseeesssssnnnssseesssssssnseeessnssnnnseseessennnnnees 66
UL_SCHEMATIC ... 66
(@) = 728 = 67

EAGLE User Language — Version 9.2.0

Virtual NetsS, AlINELES () LOOP iiiiiiiieiiiiiiiiiiiirirererirerererenersrsrsrmerrr—————————————————————————.
Virtual parts, allparts() loop
B A P L E 1ttt ittt et s et et st s et s et s et eeuseseseraserasstasssenssnasannssnnssnesssensssnssenssnsnseenssnnssenssenssennsennsennsrensternrennsennsrrneseresens

102 PR3 e 11 68
N O T E teeteettetuuuereeeeereunuaeseeereenneeeeeeerannnnssseearsesnnnssseessnssnnsnsseessesssnnsesesssssnnsnsesersesssnnseseesesssnsnsseessensnnnseseensssnnnnneeeenns 68
B X AP L 1+ tevettuuuunseeereresnnnsereseressnnnseeeeesansnnssesersessnnssseessesssnsnsesessssssnssseessnssnnsnseeesssssnnnsseessssssssnseeesenssnnnseseessssnnnrees 68
UL _SHEET ...cuvuiiritinisisisessssisstsssessssssssstsssssssassssssssssssssssssssssssssssssssssssses 69
B X A P L 1+ tevettuuuunseeerernsnnnseseeerssnnsnseeesesassnnssseeersensnnssseesnesssnnnsesessssssnnsssessnsssnnnseeessssssnnseeesesssnsnseeessnssnnnseseessssnnnnnees 69
102 PR e 7. P 69
(@)= 28 = 69
B X A P L 1+ tevettuuuunseeerernsnnnseseeerssnnsnseeesesassnnssseeersensnnssseesnesssnnnsesessssssnnsssessnsssnnnseeessssssnnseeesesssnsnseeessnssnnnseseessssnnnnnees 69

UL _VARIANTDEF ...iciiiieeesessssssnnnnneeteettnniisimiisssssssssssssssetettiiiiiiiiiiiisssssessssssttttiiiiiiiiiiiissesssssmitiii 73
B X AP L 1+ teeettuuuunseeereresnnnseseeersesnnneeeessassnnssseeersessnnsseeessssssnsnsesessssssnnsseessnsssnnnseeessssssnnsseessesssssnseeesensssnnseseessssnnnnrees 73
L 10 PP 73
B X AP L 1+t eeettuuuunseeerernsnnnsereseressnsnseeesesansnnsseeersessnnsseeessesssnsnsesessssssnnsseessnsssnnnseeessessnnnsseessnsssssnseeesensssnnseseessesnnnnees 73
UL VT A . iiiiiiiieietetetetetetetessssressssssssssssssasssesssssssssassssssssssssssasassssssssssssssssssssssssssssssssssssssasesesssssssssssasssssssassssasns 74
(@) = 728 = 74
N O T E tetteeeettuuueseeeeereenuaeseeereennaaseeeeransnnssseeersesnnnssasessnssnnsnseeesssssnnnsesessessnnsnseeessesssnnsesessssssnsnsseessessnnnseseessesnnnneeerens 74
B X AP L 1+ teeettuuuunseeereresnnnsesesereesnsnsseeessassnnssseeersessnnsseeessssssssnsesessssssnssssessnsssnnnseeessssssnnsseessnsssssnseeessnsssnnseseessssnnnrens 75
UL W I RE .. iiiiiieieieteieteteteressrorersssssssssssssasssesssessssssssssssssssssssssssasas 75
(@) =T 28 = 75
L2 0 N 75
ARCS AT WIRE LEVEL teeeetttuuueseeeeeressunsaseeersssnnnssesesssssnnaseeessssssnsesessssssssasesessesssamesessssssnaseeessessmmmneseesssssmaseeerees 75
0= ST 76
DE E TN T T IONS .. ctcietttecetrstecasrerecsssesassssssessasssssssssssssassssssssssssssssassssnsas 76
CONSTANT DEFINITIONS ..ccceteteceerereceerorecassesecsssnsas 76
VARIABLE DEFTINITIONS ..icicitctecettececerrecectsrasassosesassosessssossssssscsssassssssassssasass 77
B X AP LE S tevettuuuunreeereresnnnseseeersssnnnseeeeessssnnsasesesssssnnsseeesssssnssnsesessssssnssssessnsssnsnseeessssssnssssessssssssnseeesenssnnnseseessssnnnnrees 77
FUNCTION DEETINITIONS ..iciciettetecettececasrecessssesassssecassasssse 77
THE SPECIAL FUNCTION MATIN () tererueeeeuueeeeuueeersuneeessneeersunrerssneeesssneerssssessssaeesssnsessssnsesssneessssesssssnserssneesssnnsersns 78
B X AP L 1+ tevettuuuuuseeererennnnseseeersesnsneeesssassnnsseeersessnnsseeesnssssssnsesessssssnssssessssssnsnseeessssssnnsseessnsssssnseeesenssnnnseseesssnnnnnrens 78

EAGLE User Language — Version 9.2.0

OPERATORS ..c.uittuuittennerennirtaesineesietesseressssssssistssserssssstsssssssssstasssstssssssssssssssstesssssassssssssstsssssesssssssssssasssranssssans 78
BITWISE OPERATORSiccccitteuietentirennistensietassereasistssssssassetssssresssssssssssasssrsssssssssssssssstssssssssssssnssssasssranssssans 79
LOGICAL OPERATORScttuuttencirtansereasirtsescssnsietessertssssssssistssserssssstsssssssssssssssstasssssssssssssessassssasssssnsssssnssses 79
COMPARISON OPERATORScceuctetenereasertaescreasictessereasssrsnsissssserssssstssssssssssnssssstssssssssssssssensassssasssssnsssssnssses 79
EVALUATION OPERATORS ...ccccitteuuireneisrensieranserensistsnsinsassetesssressssssssisrssssrssssssssssssssssrssssssasssssnssssassersassssans 80
ARITHMETIC OPERATORS ...cccottuuirrnuncreanierenserennssrensistasssresssstsssssssssstssssrssssssssssstsssstsssssssssssssssssasssssnssssnnses 80
STRING OPERATORS ...ccceuieteenereanscrencictensereasssrensistssserssssstsssssssssssssssstsssstassssssssssssssstassssssssssssssstassesanssssanses 81
EXPRESSTONS...cccitttuitteuirteuirtenistenserensistsesietsserssssstsssisssssstssssstssssssssistsssstesssstsssssssssstssssssasssssnssssasssrenssssans 81
ARITHMETIC EXPRESSTIONcicccitteuncteenietenscrencssrensisresssressistsssssrsssstssserssssssssssstssssrsssssssssssssssstasssssnsssssnses 81

D = N 81
ASSIGNMENT EXPRESSTIONcicccitteeceeenietenscrennssrensistasisressistsssssssssetssserssssssssssssssssrsssssssssssssssssasssssnsssssnses 82

D = N 82
STRING EXPRESSTON ..cicuiiteuuirtenirencierensereasssrensistssseresssstsssssssssssssssstssssrsssssssssssssssstassssssssssssssstasssssnsssssnses 82

D 1= N 82
COMMA EXPRESSTION ...ccccitteuirtenirtaniereasirtsesinsasistessertasssssssistsssesssssstsssssssssstssssstasssssssssssssessasssssssssssssssssssses 82

N 3= N 82
CONDITIONAL EXPRESSTION...cciitttittturirtausireasierensereasssrsnsisrsssersassstssssssssssrssssstasssssssssssssesssssssasssssssssssnssses 82

D = N 82
FUNCTION CALL ceeutteeeireenscrensertansssensierssssrtssssrsssissssserssssstsssssssssssssssstssssssssssssssssssssstassssssssssssssstassesanssssanses 83

N 3= N 83
STATEMENTS ..ieuuittuuiiteeirtenietenirtanirtnsiettssirtasistessistsssettssistsssssssssstssssstsssstssssstsssssssssstassesssssssssssstassssenssssanses 83
COMPOUND STATEMENTcccctttuirtenerensirtaesirrasietessertasssssnsissssserssssstsssssssssssssssstasssssssssssssessasssssnssssssssssssses 83
EXPRESSION STATEMENT ...ccccieteuutreneistensieranserensistsnscssasseresssrtsssssssssstssssrsssssssssssssssssssssssssssssnssssassessassssans 83
CONTROL STATEMENTScccitttuirteneteanirteeireasistessertasssssnsistssserssssstsssssssssssssssstasssssssssssssesssssssssssssssssssnssses 83
BREBAK oituiteitteittutieiitiiaiieittaiiteiseeissetississssiatsesstsssessssissssiasssssstasssssssssssessasssssstasssssstassssssssssssssasssssssasssasssas 84
CONTINUE ...cieuuireeencrennierensereasssrsnsisrasssressestsssssssssstessesessssssssssssssesssssstsssssssssssssssstassssssssssssseseassssanssssnsssssnssses 84
T 1 - 5PN 84

D 3 N 84
0) 85

D = N 85
IF ELSE cuuitieuiitenirtneiittesintenieiensirtsesistesistesseressstsssistsssstesssstssssstsssstsssesesssssssssstsssstasssstssssssssssrassesansssssnnes 85
RETURN ...uituittuittutieiteettaiteistaiitessssissssississsstasssessessssessssssssstasssssssassssssssssssssasssssssasssssssassssssssssssssasssssssasssasssas 86
LN 0 86

N 3= N 86
1 0 N 87

D 3= N 87
BUTLTINS ..iteuiiteuittenierennerteeineesiotesseressstsssistssserssssstsssssssssstsssssesssssssssssssssresssssassssssssstsssssessssssnssssasseranssssans 87
BUILTIN CONSTANTS ...ciceuireeeietenncrennssrensietasseresssstsssesssssetssssstsssssssssssssssrsssssssssssssssstssssssssssssnssssssssrsnssssans 87

EAGLE User Language — Version 9.2.0

BUILTIN VARIABLES ...ciceucttteeietenscrennstensietasseresssstsssssssssstessesesssssssssstssssressssssssssssssstssssssssssssnssssassersassssans 88
BUILTIN FUNCTIONScccucittuuietenscrennsseensietanseresssstsssssssssetssssresssssssssssssssrsssssssssssssssssssssssssssssnssssasssrsnssssans 88
CHARACTER FUNCTIONS....cccittutitteneteanirtansirensistensertasssssnsisrssserssssstssssssssssrssssstasssssssssssssessassssasssssssssssnssses 91
Is) TN 91
CHARACTER CATEGORIES tiittuttteisuutesiiuttteisistttesisseesiisteesssissssessssssssimsssssssssssesssssssssosssessssssssesssssessssssessssansessnns 91
D 3 N 92
TO. . . () ceeeeeeeteiiiiiiiiiiiiinneeittetettttteiiiieeisssssssssssseeeeeteesessssssssssssssssssssseseeeeessessssssssssssssssssssseeeesessssssssssssssssnns 92
FILE HANDLING FUNCTIONS...cciicceiettutereansrrensistansereassstenssssssssrssssstasssrsnsssssssssssssstassesssssssssssssassesansssssnses 92
30 1 0 00 23200 2 () T 93
N 3= N 93
FILEGLOB () cevteerttreeeseeeesseessesssesseessesssessesssesssessssssessssssssssesssessesssessssssesssesstsssesssessesssesssessesssessssssessessesssesns 93
NOTE FOR WINDOWS USERS.iittuueeetsuereissuerersisneeessueeeissmneseisuseeessmsteessssssesismssesssmssessssssesimssesssmssessssssssssseesnns 94
D 3 N 94
FILENAME FUNCTIONScicceerteuireneierenscrtasssrensistasseresssstsssssssssstssssstasssssssssssssssssssstassssssssssssssstassssanssssanses 94
D = N 94
FILEDATA FUNCTIONS .. .c.citcierteuireneierensertasssrensistasseresssstssssssssssrssssstssssrsssssssssssssssstassssssssssssssstassesansssssnses 94
D 3 N 94
FILE INPUT FUNCTIONS ...ccooteciireueietenscreansrrensistenseresssstesssssssssrssssstasssrsssssssssesssssstassssssssssssssssassessnssssanses 95
FILERERAD () cevveererreeeseeesesseessesssesssessesssessesssesssessssssessssssesssesssessesssessssssesssesstsssesssessesssesssessesssessssssessessesssesns 95
N 3= N 95
MATHEMATICAL FUNCTIONS....cccitttuettentetenserennssrensisrassressistsssssssssotssserssssssssssssssssrsssssssssssssssssassessnsssssnses 95
ERROR MESSAGES tuuuteiiitiieiiiiiieiiittteeiiittessiietessaasesssabesesssstssessatssessabaeessbbesesaaaassesaabaeessbbaeesssbasseseabaeessantaeeenns 96
ABSOLUTE, MAXIMUM AND MINIMUM FUNCTIONS.....cccccceererrunerannerennssrresserasssrensessssssssasssrassersnsssssnses 96
EXAMPLE

EXAMPLE
MISCELLANEOUS FUNCTIONS...cccittctetteutetenserennssrsnsistasssresssstssssssssssrssserssssssssssssssssrsssssssssssssssssasssssnsssssnses 98
CONFIGURATION PARAMETERS ...cccctcuiirteuirennietensireanssrensistassereassstssssssssssrssssstasssssssssssssessassssanssssssssssnssses 98
D 3= N 99
COUNTRY () coveereeerersresseessesseeesesssesssessesssessssssesssessssssesssessesssesssesstsssesssessesssesstsssesssessssssesssesstsssesssessesssessesssess 99
N = N 99
EXTIT () cereeererreeereessesseesseessesssessesssesssessesssesssessesssessssssesssessssssssssesstessesssessesssesssssstsssesssessesssesnsessesssesssessesssesns 100
CONSTANTS tuuttteisurttesiitttte s sttt e sbr e e e sab et e s s ibb et e s s aba s e e s ab e e e s e b b e s e s aba s e e s bb e e e e s b b e e e s bbb s e e s bb s e e s sab b e e e s snba s e e sabneessabbeeeeans 100
FDLSIGNATURE () veeevveeerreeeseessesseeeseessesseessesssesssessessssssesssesssessesssesssessesssesstsssesssessesssessssssesssesssessesssessssssess 100

EAGLE User Language — Version 9.2.0

LANGUAGE () ceeeeeereensrensranssassrascssscsssasssnssssssssssssssssssssssasssasssnsssasssnne 100
B X A M P L 1+t eeetttuuunseseeereennueseeersensnnsaeeeeseessennsesesssssnssnsseessssssnnssseeensssssnnsesesnssssnsnseeesssssnnnssseessssnnsnsesessnssnnnneeeeensnnnnn 101
71010) 0 1 = (P 101
B X A M P L 1+t teetttuuunsesereresnnuereeersensnnsaseeereesnennsesessrssnssnseeessssssnnsnsesensssnsnnsesesssssnnsnseeesssssnnnsseeessssnnsnsesessnssnnneseeeesnnnnn 102
=0 3 N 102
CON ST ANT S eeeeeeerunuunserereresnnnnesesersessnnsaseeesssssssnseeessssssnsnseeesesssssnssseesssssssssseeessssssnsnseeesssssnnsssesesssssnsereseesnssnneseesenns 103
SLEEDP () tieuttenctettrutcratsenteessranssesstasssssssassssssssssssssssssssssassssssssssssssssssssssssssssssssssssssasssssssassssssssssssssssssssssassssnssas 103
SORT () eecreeernncraernscrasssnseessrasssssstasssssssassssssssssssssssssssssasssssssassssssssssssssssssssssssssssssassssssssssssssssssssssssssssssassssnssas 103
SORTING A SINGLE ARRAY tueeeeeeereruuuuereeereessnnaresessessnnsareeereesssnasesessssssssaseeessssssnmeseesnsssnasseessssssnareseesrsssnsnseeseees 103
SORTING A SET OF ARRAYS titeeeeeeuuuuuereeereenmnnaresesssssnnnareeersesssnmesessssssssareeessssssnmeseesssssnaseeeesmssnareseesrssnanseeseees 104
STATUS () ceveeereerascrasesnseessranssesssassssssssssssssssssssssssssssssassssssssssssssssssssssssssssssssssssssasssssssssssssssssssssssssssssssssssnssas 104
SYSTEM () ereeereeruscesssenseessrasssesssassssssssssssssssssssssssssssssssssssssassssssssssssssssssssssssssssssasssssssssssssssssssssssssssssssssssnssas 105
INPUT/OQUTPUT REDIRECTION tuuvruveeeeeeeresssreeseeseeessssssssesesesesemsssssssssseesssssssssssssesssemnssssssssseesesessssssssesesessnssssens 105
BACKGROUND EXECUTION eteterttusuunseeeeseessnnnresersessnnsaseeessssssnnseseesnsssssseesessssssnsssesessssssnsseseessssnnsasesesssssnnmneseessssnnnn 105
B X A M P L 1+t teetttuuunsesereresnnuereeersensnnsaseeereesnennsesessrssnssnseeessssssnnsnsesensssnsnnsesesssssnnsnseeesssssnnnsseeessssnnsnsesessnssnnneseeeesnnnnn 105
UNIT CONVERSTIONS ..cccieuiiuncretracenssesssensiassssssrassssssssssssssssssssssasssssssassssssssssssssssssssssasssssssasssasssasssnsssnsssnsss 106
B X A M P L 1+t eeetttuuunsseeeeresnnuereeersensnnssseeereesnennsesesssssnssnsseessssssnnsnseeensssssnnsesessssssnsnseeesssssnnnseeeessssnnsnsesessnnsnnneeeeensnnnnn 106
NETWORK FUNCTIONS ...cituiieniieeitensrancressrascrossssscssssssssssssasssssssassssssssssssssssssssssasssssssassssssssssssssssssssssassssnssns 106
NETERROR () titeetteectencracranirnncessssnssessrassssssrasssssssssessssssssssssassssssssssssssssssssssssssssssasssssssassssssssssssssssssssssasssssssas 106
B X A M P L 1+t eeetttuuuneeeeeresnnneseeersensnnssseeereessnansesessrssnssnseeessssssnnsnseeensssssnssesessssssnsnseeesssssnnnsseeessssnnsnsesessnssnnnneseeensnnnnn 107
NETGET () sereecreecranerencrascrsssrascssssssssssssassssssssssssssssssssssssssssssasssssssassssssssssssssssssssssassssssssssssssssssssssssssssssasssssssas 107
S S Ls CONNECTIONS tuureeererssunseeseerensnnnsseeessessnnssesessssssnsseeessssssnssesessssssssnseeessssssnnsessesssssnsaseeesssssnnsseseesssssnnseeseens 108
B X A M P L 1+t eeetttuuuneeeeeresnnneseeersensnnssseeereessnansesessrssnssnseeessssssnnsnseeensssssnssesessssssnsnseeesssssnnnsseeessssnnsnsesessnssnnnneseeensnnnnn 108
NETPOST () teecteecreecrencrascrassrnscssssssssesssassssssssssssssssssssssssssssssasssssssassssssssssssssssssssssasssssssassssssssssssssssssssssasssssssas 108
B X A M P L 1+t eeetttuuunseseeeresnneereeereensnnsaeeeereesnennsesesssssnssnseeessssssnnsnsesensssnsnnsesessssssnsnseeenssssnnnseseensssnnsnsesessnnsnnneseeensnnnnn 109
PRINTING FUNCTIONSccittttuettenttacrasrancssssssssesssasssssssassssssssssssssssssssssssssssssasssssssassssssssssssssssssssssassssnssas 109
PRINTE () eveecreccrnsceascenseessranssesssasssssssascssssssssssssssssssssasssssssassssssssssssssssssssssssssssssasssssssssssssssssssssssnsssssssssssnssas 109
FORMAT STRING tuurerurerurerusernsresesesnsesnssrnssnsssrsssssssssnssnnssssssssssssssssnssenssssssensssnnsssnssesssenssennssesesssssssssenssensssrnesssnsees
B ORM AT SPECTETERS ttutttuttrurruarerarernsernssrnssrsssssssssnssnnssssssssssssssssssssnssesssensssenssenssesssensssnsssssessssssrssenssenssssnssssasees
CONVERSION TYPE CHARACTERS trtuerereeereeuuuueserersessnnnaseeesesssnnnseseesssssssnseesessssssnesesessnssnnmasssesssssneseseessnsnnsnseessees
FLAG CHARACTERS ttuteturerusernnrtssessernsernssrnssressssssssnsssnsssssssessssssssnsssnssesssessssnnsssnssesssenssennsssnesssesssssensssnssssnsssssees
WIDTH SPECTETIERS tieturetuuerureuserusernseessseenssessssnssensssssssensssssssnsssnssssssessssssssssssssssssssensssnssssnessnsssnssensssnnssrsssssssens
PRECTISTON SPECTETERS teeetuutturerareruserusersssrensssssssnssnnssssssssssssssssnssssssessssnsssnssssnssesssensssnnssssesssesssssennsensssrsssssnsses
DEFAULT PRECISION VALUES tieetettuuuereeereesunnsesessessnnnaseeereesssnasesessssssssnseeesssssnnseseesssssnsaseeesssssnnaneseesssssnsaseeseees

How PRECISION SPECIFICATION (.N) AFFECTS CONVERSION
BINARY ZERO CHARACTERS teettuurereeeeereresrereeeeeeeionssssesssesseemasssssssssessssnsssssesssesssenssssssssssssesmesssssssssesssensssssssssesees

B A M P L 1ttt tet ettt et et st rerreraseruseraesenesesesenasenassrasssnssesnssnnsennssnesssssssnnssnnsennsssenssenssensssnsennssennsennssnnssenssennsennsennns
SPRINTE () teecrecrnscenseenscessranssesssasssssssascssssssssssssssssssssassssssssssssssssssssssssssssssssssssssasssssssassssssssssssssssssssssassssnssas 112
F'ORMAT STRING tevtuuuuereeereessnnseeeessessnnneseeesssssnnnsesessssssssseeessssssnssesessssssssnseeessssssnnseseesssssnsaseeesssssnnseseessssnnnseeseens 112
BINARY ZERO CHARACTERS tertturuureeeeereeununererereessnnsnseeessssssssesessnsssssassesessssssnsssesessssssnssesesssssnssasesesssssnnmneseeerssnnns 112
ExXaMPLE
STRING FUNCTTIONS ...ccuiieeiieertanctencrancrssssscssssssssssssssssssssassssssssssssssssssssssssssssssasssssssassssssssssssssssssssssassssnssas 113
STRCHR () ereecreerascraseenteessranssesssasssasssssssssssssssssssssssssssssssssssnssas 113

EAGLE User Language — Version 9.2.0

D 1= TN 113
STRIOIN () eeeereeererrresserssesseessesssesssessesssssssessesssesssessesssessesssesssesstsssesssessssssesstsssesssessesssessssssesssesssessesssessesssess 113
D = TN 114
STRLEN () teeeeeeeesssssssnnnneneeteeeeeetisiiesssssssssssssssssssteeessssssssssssssssssssssssssstteesssssssssssssssssssssssssssssaesssssssssssssssssssnns 114
D = PN 114
STRLWR () teeeeeeesssssssssnnnnneereeeeeeesisiiesssssssssssssssessseeeessssssssssssssssssssssssssssteessssssssssssssssssssssssssssasessessssssssssssssssnns 114
D = TN 114
STRRCHR () teeceeessssssnnnnnnenneeeeeeetiiiiesssssssssssssssssssseeesssssssssssssssssssssssssssteeesssssssssssssssssssssssssssaatesssssssssssssssssssnns 115
D = TN 115
STRRSTR () teeeeeesssssssnnnnnnnreeeeeeeeeissiessssssssssssssssssseteesessssssssssssssssssssssssssteessssssssssssssssssssssssssssasesssssssssssssssssssnns 115
D = N 115
STRSPLIT () cereeererrvesseeserseessesssessesssesssesssessesssesssessesssessesssesssesstsssesssessssssesstsssesssessesssessssssesssesssessesssessessses 115
D =) PN 116
STRSTR () teeeeeeessssssssnnnnenreeeeeeeeiisiiessssssssssssssssssetteessssssssssssssssssssssssssstteesessssssssssssssssssssssssssatassessssssssssssssssnns 116
D = PN 116
STRSUB () teeeeeeesssssssnnnnneneeteeeeeetiiisesissssssssssssssssseteessssssssssssssssssssssssssssttessssssssssssssssssssssssssssatesssssssssssssssssssnns 116
D =) PN 117
STRTOD () teeeeeeeessssssnnnnneereeeeeereeisssesssssssssssssssesseeteessssssssssssssssssssssssssstteesessssssssssssssssssssssssssatessessssssssssssssssnns 117
D = PN 117
STRTOL () teeeeeerssssssssnnnnneeeeeeeeeeeeisssessssssssssssssssssseteesssssssssssssssssssssssssssseeessssssssssssssssssssssssssssatessessssssssssssssssnns 117
D =) PN 117
STRUPR () tieeteeesssssssnnnnnneeeteeeeeetiiiiesisssssssssssssssssteeesssssssssssssssssssssssssssteeessssssssssssssssssssssssssssasessessssssssssssssssnns 117
D = PN 118
STRXSTR () teeeeeesssssssnnnnnnneeeeeeeeerissicsssssssssssssssssssteeesssstsssssssssssssssssssssstteessssssssssssssssssssssssssssatessssssssssssssssssssns 118
D = TN 118
URN FUNCTTIONS ..cieuiiteueirenecreesintanssrensissssssresssstssssssssssrsssssessssssssssssssstssssstssssssssssssssssssssstassssssssssssssssnssssans 118
URNBASE () tioveereeeresseeeseessesseeesesssessssssssssesssessesssesssesstsssesssssstsssesstsssesssessesssesssssstsssesssessesssesssessesssesssessesssens 119
D = TN 119
URNVERSTION () teeveereeereeeresseeeseessesseessesssesssessesssessssssesssessssssesssesstsssesssessesssesssssstsssesssessesssesssessessssssssssesssens 119
D = PN 119
TIME FUNCTTIONS ...cccittetietenuirteescntessotanssrenssstsssistsssstensestsssssssssstssssssssssssssssssssstsssssssssssssssssassssansssssssessasssne 119
TIME () ceeeeeeeceeeeenseeecssssssssnnssnneeeeeeesessssssssssssssssssssseessesssssssssssssssssssssssssseeseesssssssssssssssssssssssssasasesssssssssssssssssnns 120
D = PN 120
TIMEMS () teeeeereeeresseeeseessesseessesssesssessesssessesssesssesstsssesssessesssesssesstsssesssessesssesstessesssesssessesssesstsssesssessssssesssenes 120
D = PN 120
TIME CONVERSTIONS ...icciitteuirteuncnrenietanssrensisteesistasssrensistsssesssssstssssrssssssssssssssssrassssssssssssssstasssssnsssssssensasssne 120
D 3= TN 121
OBJECT FUNCTIONS ...c.ctttuiitenrirtanerencistnnsertasistasssrsnssstsssssesssstsssssssssetssssstssssssssssssssesssssssassssssssssssssseassssans 122

EAGLE User Language — Version 9.2.0

CLRGROUP () weeeeereereesseessesssessesssesssessesssessssssesssessssssesssessesssesssesstsssesssessesssesssessesssessssssesssssstsssesssessesssesssenes 122
D = PN 122
INGROUP () weveveereeeesseeeseessessseesesssessssssesssesssessesssesssessesssessssssesssesssessesssesssessesssesstsssesssessssssesssessssssesssessesssess 122
IDENTIFYING THE CONTEXT MENU OBUIECT iruieeiisueeeissuneeersiuneeessneeessimsteeisneesssmseeessmseessssnessnmssesssmssesssseees 123
D = PN 123
SETGROUP () ceveererrresreeeesseessesssesssessesssssssessesssesssessesssessesssesssesstsssessssssssssesstsssesssessssssesssessesssesssessesssesssssses 123
D = TN 124
SETVARTANT () .eereeeereeererseesseessesseessesssesssessesssesstessesssessesssesssesstsssesssessssssesstsssesssessesssesssessesssesssessesssessesssess 124
D = TN 124
VARTIANT () eeerveererreeeserssesseesseessesssessesssessesssesssesstsssesssessesssesstessesssessesssesssesstsssesssessesssessesssesssessesssessssssesssesns 124
D = N 125
XML FUNCTTIONS ..cceuiteueirennereesintasssrensistssssrsassstasssssssssssssssessssssssssssssstesssstasssssssssssssssssssstasssssssssssssssenssssans 125
XMLATTRIBUTE () , XMLATTRIBUTES () coeeereereeererseeeseessesssessesssesseessesssessesssssssessssssesssesssessessssssssssesssssns 125
D 1= TN 125
XMLELEMENT () , XMLELEMENTS () vioveerteereesseeseeesesseessesssesssessesssesssessesssessssssssssesssessesssesssessesssessssssesssens 126
D = PN 126
KMLTAGS () eeeeeeeeeeeeeeerniecessssssssssnnneeeeeeeeeesssssesssssssssssssssseeseteesesssessesssssssssss 127
D = PN 127
XMLTEXT () teoeereeereeseeeseessesseeesesssesssessssssesssessesssesssssstsssessssssssssesstsssesssessesssesssssstsssesssessesssesssessesssesssessesssens 128
D = PN 128
BUILTIN STATEMENTS ...ccciittutittanttencirtanireasistensirensistssssstsssstsnsssssssetssssstssssssnsssssssssssssstsssssssssssssssssnssssans 128
BORRD () seeeeeeeeeeeeeeeeeeensseccssssssssssssssreseeetessssssssssssssssssssssssesttsssssssssssssssssssssssssssssstssssssssssssssssssssssssssassesssssssssns 129
CHECK IF THERE IS A BOARD wettirrieisruiesueisutesiseesseesiseesareessstesarssessessssssssstesssessssessseesneesaseesanssssseesassssssens
ACCESSING BOARD FROM A SCHEMATIC
0N = 5N
DEVICESET () cevteereereeesereresseeesesssessssssesssessssssesssesssessesssessssssesssesstsssesssessesssesssssstsssesssessesssesssessesssessssssesssesss 130
CHECK IF THERE IS A DEVICE SET.uutteiiiruereissiureeiisueeesiiiereimimeeeiimseesiimeeeimmmsieimmeesimeeeimmee e 130
D 3=) PPN 130
LIBRARY () toveereeererrresseessesssessesssesssessesssessssssesssesstsssesssessesssesssesstsssesssessesssesstessesssesssessesssesstsssesssessssssesssenes 130
CHECK IF THERE IS A LIBRARY .iiiiiiiieiiiiurreiiiiueeeiiimteessiiereiiineeeiiimseessiiesessimmstesimseessmmseesssmmsesssnsesssssesesnns 131
D = PN 131
130070163 N () R 131
CHECK IF THERE IS A MODULE tuttttiiiuueeissuereisiueeeisimstessiueeessisnesesisseesssmesesssssssessmmseesssmssesssssssessssesssssesssnns 131
D = PN 132
OUTDPUT () everreeererererseeesesssesseessesssesssesstsssesssessesssesssessesssessssssssssesstsssesssessesssesssssstsssesssessesssesssessesssesssessesssesns 132
N /(0 TP 132
NESTED OUTPUT STATEMENTS uutttiiueeeesssreteisisneesiiteeessimteeesiimseesismseesssmsssessssessssmssssssmssesssssessssissessssssesssssees 132
D 1= TN 132
FOOTPRINT (), NEW AS OF EAGLE 9. Ll.iicciccsrceerersesreesseissesseessesssesseessesssessesssessssssssssessssssessssssesssess 133

CHECK IF THERE IS A FOOTPRINT

B A M P L 1ttt tet ettt et et st rerreraseruseraesenesesesenasenassrasssnssesnssnnsennssnesssssssnnssnnsennsssenssenssensssnsennssennsennssnnssenssennsennsennns

EAGLE User Language — Version 9.2.0

SCHEMATIC () seeererrveerereresseessesssessesssesssesssessesssesssessesssessesssesssessesssesssessesssesstessesssessesssesssessesssesssessesssessesssess 133
CHECK IF THERE IS A SCHEMATIC.iiciueeiisturreisiureeisisneeessmereissneeesismseesssmeeessssstessnmseesssiesessssseessnseessssesessns 134
ACCESSING SCHEMATIC FROM A BORRD .uttiiissuueeeiiueeeisineressuneesisueesssmteeessssessismssessssmssesssssessssiesessssssessssssees 134
ACCESS THE CURRENT SHEET .uutiiiitueeeissueresiiuneeeisseeeesineeesiimseesisseesssmsseessmsessismsssessmssesssssessssssesssmssesssnseees 134
ACCESS THE CURRENT MODULE .iiiiieutteiiiuriieiiiuneeeiistetessiinttessasesssmteesssssssessmsssssssnasssssssssessmssesssssasesssssnsesssnnees 134
D = PN 134

SHEET () teeetteeeecsssssssnnnnnnneeteeeeeeeissiessssssssssssssssssseeeessssssssssssssssssssssssssseeeesessssssssssssssssssssssssssasesesssssssssssssssssnns 134
CHECK IF THERE IS A SHEET tiiruettiiitueeisiiueieiiiseesiiistessimeteisimnssesimseesssmesesssssstessmssesssisssssssssssssssesssssessssns 135
D = TN 135

SYMBOL () teeeeeeesssssssnnnnneeeeeeeeeeesssssesssssssssssssssssseseeesssssssssssssssssssssssssssteeessssssssssssssssssssssssssseatessesssssssssssssssnnns 135
CHECK IF THERE IS A SYMBOL wutttiiiiuueeissiuereisiueeeiiiuntessiueeeisinseesismseesssmesessmmtstesimmseessiiesesssmnseessmsessssseessnns 135
EXAMPLE

DI ALOGS . .uuueeeeeeeeeeeeeeeisiiesssssssssssssssreseetttssssssssssssssssssssssssesetesssssssssssssssssssssssssessstesssssssssssssssssssssssssessesssssssssns 136

PREDEFINED DTALOGS ..c.iettuutrtuuietensietanserensistsnsentesistasseressssssssistsssstssssstsssssssssstssssrssssssssssssssssrasssssssssssnsss 136

DLGDIRECTORY () tereeereeeesseeeseessesseessesssessesssesssessssssessssssssssesssesstsssesssessesssesssesstsssesssessesssesnsessesssessssssesssesns 136
D = PN 137

DLGFILEOPEN () , DLGEILESAVE () eeereererrreereeeresseeeseessesssessesssesssessesssessssssssssessssssesssesssessesssessssssessssns 137
D = PN 137

DLGMESSAGEBOX () sveeeeeretseeesesssesseessesssesssessesssessessstsssessssssssssesstsssesssessesssesssssstsssesssessesssesssessesssessssssesssesns 137
D = PN 138

DTIALOG OBUECTS ..c.iteuuirteeereesirtansrensistaesirtasistasssrsssistsssssesssstssssstsssstssssstssssssssssssssssssssstssssssssssssssssenssssans 138

DL GCELL . cuutttuuitteesireanssrenserensserenssstssssrsssssssssssssssstassssssssssssssstsssstassssssssstssssstassssessssssssssesssstasssssssssssssssenssssans 139
D = PN 139

DLGCHECKBOX .. ceuttteuittensirenesereesistassersnsistssssstsssstasssssssistsssssesssstsssssssssstssssstasssssssssssssssssssstassssssssssssssssassssans 139
D 3=) PPN 140

DLGCOMBOBOX . ..ccttttttttteeessssssssssssssreseetetsssssssssssssssssssssssssstteesssssssssssssssssssssssssssstssssssssssssssssssssssssssssassssssssssns 140
D = PN 140

DLGDTIALOG .eeuutteerereenstenserennsersssistasssrsnsssssssssssssstsssssssssstsssssesssstsssssssssstssssstasssssssssssssssssssstasssssssssssssssenssssans 141
D = PPN 141

DLGGRIDLAYOUT ..ceutteueireeeereesistasssrensistsssertassstssssssssistsssssessssssssssssssstssssstassssssssssassssssssstassssssssssssssssassssans 141
D = PN 142

DLGGROURP ...ceuuiteunireenistensirennieteesistasssrensistsssistsssstassssssssstsssssesssstsssssssssstssssstasssssssssssssssesssstasssssssssssssssenssssans 142
D = PN 142

DLGHBOXLAYOUT ...ceuutteuuireneireesirtansrensistsesirtasistasssssssistsssssesssstssssstsssstesssstssssssssssssssssssssstsssssssssssssssseassssans 142
D = PN 143

DLGTINTEDTT ... teuuitteuetensirenniereesistasssrensistsesssesssstasssssssssssssssesssstsssssssssstesssstasssssssssssssssesssstassssssssssssssseassssans 143
D =) N 143

DLGLABEL ..cceuttteuireenistensereneiereesistasssrsnsistsssssssssstasssssssssssssssesssstsssssssssstssssstasssssssssssssssesssstasssssssssssssssenssssans 143
D 1= TN 144

DLGLISTBOX ..ittuuitteuietenserennsereasistasssrensistsssssssssstsssssssssstsssssesssstsssssssssstssssstasssssssssssssssssssstasssssssssssssssenssssans 144

EAGLE User Language — Version 9.2.0

D 1= TN 144
DL GLISTVIEW. . ieuiitteuitteuireneiereesistasssrensistssssstsssstsssssssssstsssssesssstsssssssssstesssstasssssssssssssssssssstasssssssssssssssenssssans 145
D = TN 146
DLGPUSHBUTTON ...ceuutteuuireeecreesintassrensistsesirtassstasssssssisssssssesssstsssssssssstssssstssssssssssssssssssssstassssssssssssssssassssans 146
D = PN 146
DLGRADTIOBUTTON.....cteuuttteeereesirtasssrensssssesereassstasssrssssssssssstssssssssssssssstssssstssssssssssssssssssssssasssssssssssssssenssssans 147
D = TN 147
DLGREALEDTIT..ccuuitteuittenirtnniereesintessrensistsssirtssistassssessistsssssesssstsssssssssstssssstssssssssssssssssssssstassssssssssssssseassssans 147
D = TN 148
DLGSPACTINGcceuuitteurtensirenesereesistasssrensistsssssssssstassssssssstsssssesssstsssssssssstesssstasssssssssssssssesssstassssssssssssssseassssans 148
D = N 148
DLGSPINBOX ...ittuttteuietenserenesereesistasssrensistsssssssssstssssssssssssssssesssstsssssssssstssssstssssssssssssssssssssstassssssssssssssseassssans 148
D =) PN 148
DLGSTRETCH ...cteuuitteuittennireneiireesistassrensistsesistsssstasssssssistsssssesssstsssssssssstssssstssssssssssssssssesssstassssssssssssssseassssans 148
D = PN 149
DLGSTRINGEDIT ..cceuutteutireneerensincanerensistsessreessstasssssssssrsssssessssssssssssssstssssstasssssssssssssssssssssassssssssssssssssassssans 149
D =) PN 149
DLGTABPAGE ...cttuuttteuietensirtneieteesistassstensistsesirtsssstassssessistssssstsssstssssstsssstesssstasssssssssssssssesssstassssssssssssssseassssans 149
D = PN 150
DLGTABWIDGET ...cceeuitteueirennierensintasssrensistsssereassstssssssssistsssssesssstsssssssssssssssstssssssssssssssssssssstassssssssssssssssassssans 150
D = < TN 150
DL GTEXTEDTIT..ceuitteiitenireneiiteesistaserensistsesirtesistasssssssistsssssesssstsssssssssstssssstasssssssssssssssssssstassssssssssssssseassssans 151
D = PN 151
DL GTEXTVIEN..iiiitteittenireneiereesintassrensistsssirtssistasssssssistsssssesssstsssssssssstesssstasssssssssssssssesssstassssssssssssssseassssans 151
D = TN 152
DLGVBOXLAYOUT ..ceutteueireneereesintasssrensistsescresssstasssssssistsssssesssstsssssssssstssssstssssssssssssssssssssstassssssssssssssssassssans 152
D = PN 152
LAYOUT INFORMATION.....cccitteuuereensetanssrencssnensiscasssrensessssserssssstsssssssssssssssssssssrassssssssssssssssassssanssssassensasssne 152
GRID LAYOUT CONTEXT .iitituureiriuureeisirureesinetetsisnsesiisseessimssessimsssesinmseesssmssessmstssesismssesssimssessssssessssessssssesessns 152
HORIZONTAL LAYOUT CONTEXT tuuvereissrureessrurreissureeisimneesssmeressisseesismseesssmesessmmsstsssmseesssieeesssmsssesssseessssesessns 153
VERTICAL LAYOUT CONTEXT uuveeeissuueeessrerersinnesesiseeesssneeesiimseesissessssmsesessmseesismssesssmssesssssessssmasesssmssessnnseees 153

MIXING LAYOUT CONTEXTS

DIALOG FUNCTIONS ...citteuerenrireensrencisransereassstasssssnsistsssssesssstsssssssssetssssstasssssssssssssssssssssassssssssssssssssassssans 153
DLGACCEDPT () cerveeerreeeserssesseeesesssessssssesssesssessesssessssssessssssssssesssesstsssesssessesssesssssstsssesssessesssesssessesssessssssesssens 153
D = PN 154
DLGREDISPLAY () teoveerteeerseeeseesseeseessesssesseessesssessssssessssssssssssssesstsssesssessesssesssssstsssesssessesssesnsessesssessssssesssesns 154
D 3= TN 154
DLGRESET () seeeeeeeeeeeerseeccsssssssssnnsseeeeeeeeeesssssssssssssssssssssseesseesss 155
D 1= TN 155

EAGLE User Language — Version 9.2.0

DLGREUJECT () teeeeeeeeeerneeccssssssssnnnseeeeeeeeeesssssssssssssssssssssssssesessassssssssssns 155

D = PN 156
DLGSELECTTIONCHANGED () «ueeeveereeereisreeseeesesssessesssesssessesssssssesstsssesssessesssessssssssssessssssesssesssessesssessssssesssesns 156

D = PN 156
ESCAPE CHARACTER ..ccotteetereesirtasssrensistsssertassstassssssssstsssssesssstsssssssssetssssstasssssssssssssssssssstassssssssssssssssassssans 157
A COMPLETE EXAMPLEcicetitteeirennictensirtasssrensistssssresssstssssssssisrsssssesssstsssssssssstsssssessssssssssssssssssssssssssssnsss 157
SUPPORTED HTML TAGS....ccccittuuitteunietenierensirteesirtesistasseresssstsssisrsssstssssstsssssssssstsssesssssssssssssssssrassessssssssnsss 158

14

EAGLE User Language — Version 9.2.0

User Language

The EAGLE User Language can be used to access the EAGLE data structures and
to create a wide variety of output files.

To use this feature you have to write a User Language Program (ULP), and
then execute it.

The following sections describe the EAGLE User Language in detail:

Syntax lists the rules a ULP file has to follow
Data Types defines the basic data types
Object Types defines the EAGLE objects

Definitions shows how to write a definition

Operators lists the valid operators

Expressions shows how to write expressions

Statements defines the valid statements

Builtins lists the builtin constants, functions etc.

Dialogs shows how to implement a graphical frontent to a ULP

Writing a ULP

A User Language Program is a plain text file which is written in a C-like syntax.
User Language Programs use the extension .ulp. You can create a ULP file with
any text editor (provided it does not insert any additional control characters into the
file) or you can use the builtin text editor.

A User Language Program consists of two major items, definitions and statements.

Definitions are used to define constants, variables and functions to be used
by statements.

A simple ULP could look like this:

#usage "Add the characters in the word 'Hello'\n"
"Usage: RUN sample.ulp"
// Definitions:
string hello = "Hello";
int count (string s)
{
int ¢ = 0;
for (int i = 0; s[i]; ++1)
c += s[i];
return c;
}
// Statements:
output ("sample") {
printf ("Count is: %d\n", count (hello));
}

15

EAGLE User Language — Version 9.2.0

If the #usage directive is present, its value will be used in the Control Panel to
display a description of the program.

If the result of the ULP shall be a specific command that shall be executed in the
editor window, the exit () function can be used to send that command to the editor
window.

Executing a ULP

User Language Programs are executed by the RUN command from an editor
window's command line.

A ULP can return information on whether it has run successfully or not. You can
use the exit () function to terminate the program and set the return value.

A return value of 0 means the ULP has ended "normally" (i.e. successfully), while
any other value is considered as an abnormal program termination.

The default return value of any ULP is o.

When the RUN command is executed as part of a script file, the script is terminated
if the ULP has exited with a return value other than o.

A special variant of the exit () function can be used to send a command to the
editor window as a result of the ULP.

Syntax

The basic building blocks of a User Language Program are

o Whitespace
o Comments

o Directives
o Keywords
o Identifiers
o Constants
o Punctuators

All of these have to follow certain syntactical rules, which are described in their
respective sections.

Whitespace

16

EAGLE User Language — Version 9.2.0

Before a User Language Program can be executed, it has to be read in from a file.
During this read in process, the file contents is parsed into tokens and whitespace.

Any spaces (blanks), tabs, newline characters and comments are
considered whitespace and are discarded.

The only place where ASCII characters representing whitespace are not discarded
is within literal strings, like in

string s = "Hello World";
where the blank character between 'o' and 'w' remains part of the string.

If the final newline character of a line is preceded by a backslash (\), the backslash
and newline character are both discarded, and the two lines are treated as one line:

"Hello \
World"

is parsed as "Hello World"

Comments

When writing a User Language Program it is good practice to add some descriptive
text, giving the reader an idea about what this particular ULP does. You might also
want to add your name (and, if available, your email address) to the ULP file, so
that other people who use your program could contact you in case they have a
problem or would like to suggest an improvement.

There are two ways to define a comment. The first one uses the syntax

/* some comment text */
which marks any characters between (and including) the opening /* and the

closing =/ as comment. Such comments may expand over more than one lines, as in
/* This is a
multi line comment
*/
but they do not nest. The first «/ that follows any /= will end the comment.

The second way to define a comment uses the syntax

int i; // some comment text
which marks any characters after (and including) the // and up to (but not
including) the newline character at the end of the line as comment.

Directives

The following directives are available:
#include
#require

17

EAGLE User Language — Version 9.2.0

#usage

#include

A User Language Program can reuse code in other ULP files through

the #include directive. The syntax is
#include "filename"

The file filename is first looked for in the same directory as the current source file
(that is the file that contains the #include directive). If it is not found there, it is
searched for in the directories contained in the ULP directory path.

The maximum include depth is 10.

Each #inc1ude directive is processed only once. This makes sure that there are no
multiple definitions of the same variables or functions, which would cause errors.

Portability note

If filename contains a directory path, it is best to always use the forward slash as
directory separator (even under Windows!). Windows drive letters should be avoided.
This way a User Language Program will run on all platforms.

#require

Over time it may happen that newer versions of EAGLE implement new or
modified User Language features, which can cause error messages when such a
ULP is run from an older version of EAGLE. In order to give the user a dedicated
message that this ULP requires at least a certain version of EAGLE, a ULP can

contain the #require directive. The syntax is
#require version

The version must be given as a real constant of the form
V.RRrr

where v is the version number, rr is the release number and rr is the (optional)
revision number (both padded with leading zeros if they are less than 10). For
example, if a ULP requires at least EAGLE version 4.11r06 (which is the beta

version that first implemented the #require directive), it could use
#require 4.1106

The proper directive for version 5.1.2 would be
#require 5.0102

#usage

Every User Language Program should contain information about its function, how
to use it and maybe who wrote it.

The directive
fusage text [, text...]

18

EAGLE User Language — Version 9.2.0

implements a standard way to make this information available.

If the #usage directive is present, its text (which has to be a string constant) will be
used in the Control Panel to display a description of the program.

In case the ULP needs to use this information in, for example, a digMessageBox(),
the text is available to the program through the builtin constant usage.

Only the #usage directive of the main program file (that is the one started with
the RUN command) will take effect. Therefore pure include files can (and should!)
also have #usage directives of their own.

It is best to have the #usage directive at the beginning of the file, so that the Control
Panel doesn't have to parse all the rest of the text when looking for the information
to display.

If the usage information shall be made available in several langauges, the texts of
the individual languages have to be separated by commas. Each of these texts has
to start with the two letter code of the respective language (as delivered by

the language() function), followed by a colon and any number of blanks. If no
suitable text is found for the language used on the actual system, the first given text
will be used (this one should generally be English in order to make the program
accessible to the largest number of users).

Example

#usage "en: A sample ULP\n"

"Implements an example that shows how to use the EAGLE User
Language\n"

"Usage: RUN sample.ulp\n"

"Author: john@home.org",

"de: Beispiel eines ULPs\n"

"Implementiert ein Beispiel das zeigt, wie man die EAGLE User
Language benutzt\n"

"Aufruf: RUN sample.ulp\n"

"Author: john@home.org"

Keywords

The following keywords are reserved for special purposes and must not be used as

normal identifier names:
break
case
char
continue
default
do

else
enum

for

if

19

EAGLE User Language — Version 9.2.0

int

numeric

real

return

string

switch

void

while

In addition, the names of builtins and object types are also reserved and must not be

used as identifier names.

Identifiers

An identifier is a name that is used to introduce a user
defined constant, variable or function.

Identifiers consist of a sequence of letters (a b c...,a B c...),digits (1 2 3...) and
underscores (). The first character of an identifier must be a letter or an
underscore.

Identifiers are case-sensitive, which means that

int Number, number;
would define two different integer variables.

The maximum length of an identifier is 100 characters, and all of these are
significant.

Constants

Constants are literal data items written into a User Language Program. According
to the different data types, there are also different types of constants.

o Character constants
o Integer constants

o Real constants

o String constants

Character Constants

A character constant consists of a single character or an escape sequence enclosed

in single quotes, like
L} a L}

'\n'

The type of a character constant is char.

20

EAGLE User Language — Version 9.2.0

Integer Constants

Depending on the first (and possibly the second) character, an integer constant is

assumed to be expressed in different base values:
first second constant interpreted as

0 1-7 octal (base 8)
0 %, X hexadecimal (base 16)
1-9 decimal (base 10)

The type of an integer constant is int.

Examples
16 decimal
020 octal

0x10 hexadecimal

Real Constants

A real constant follows the general pattern
[-]lint.fraclel|E[t+]exp]

which stands for

o optional sign

o decimal integer

o decimal point

o decimal fraction

o corkand a signed integer exponent

You can omit either the decimal integer or the decimal fraction (but not both). You
can omit either the decimal point or the letter e or £ and the signed integer exponent

(but not both).

The type of an real constant is real.

Examples

Constant Value
23.45e6 23.45x10M6

-0 0.0

0. 0.0

1. 1.0

-1.23 -1.23

2e-5 2.0x 1075

3E+10 3.0x 10710
.09E34 0.09 x 10734

21

EAGLE User Language — Version 9.2.0

String Constants

A string constant consists of a sequence of characters or escape sequences enclosed

in double quotes, like
"Hello world\n"

The type of a string constant is string.

String constants can be of any length (provided there is enough free memory
available).

String constants can be concatenated by simply writing them next to each other to
form larger strings:

string s = "Hello" " world\n";
It is also possible to extend a string constant over more than one line by escaping

the newline character with a backslash (\):
string s = "Hello \
world\n";

Escape Sequences

An escape sequence consists of a backslash (\), followed by one or more special
characters:
Sequence Value

\a audible bell

\b backspace

\f form feed

\n new line

\r carriage return

\t horizontal tab

\v vertical tab

\\ backslash

\' single quote

\" double quote

\O 0 =up to 3 octal digits
\xH H=up to 2 hex digits

Any character following the initial backslash that is not mentioned in this list will
be treated as that character (without the backslash).

Escape sequences can be used in character constants and string constants.

Examples

'\n'
"A tab\tinside a text\n"
"Ring the bellla\n"

22

EAGLE User Language — Version 9.2.0

Punctuators

The punctuators used in a User Language Program are
[1 Brackets
() Parentheses
{} Braces
' Comma
; Semicolon
Colon

= Equal sign

Other special characters are used as operators in a ULP.

Brackets

Brackets are used in array definitions
int aifl];

in array subscripts

n = ail2];

and in string subscripts to access the individual characters of a string
string s = "Hello world";
char ¢ = s[2];

Parentheses

Parentheses group expressions (possibly altering normal operator precedence),

isolate conditional expressions, and indicate function calls and function parameters:
d=c* (a + b);

if (d == z) ++x;

func () ;

void func2 (int n) { ... }

Braces

Braces indicate the start and end of a compound statement:
if (d == z) {

TR E

func () ;

}

and are also used to group the values of an array initializer:
int aif[] = { 1, 2, 3 };

Comma

The comma separates the elements of a function argument list or the parameters of

a function call:
int func(int n, real r, string s) { ... }

23

EAGLE User Language — Version 9.2.0

int i = func(l, 3.14, "abc");

It also delimits the values of an array initializer:

int ai[] = { 1, 2, 3 };

and it separates the elements of a variable definition:
int i, 3, k;

Semicolon

The semicolon terminates a statement, as in
i =a + b;
and it also delimits the init, test and increment expressions of a for statement:
for (int n = 0; n < 3; ++n) {
func (n) ;

}

Colon

The colon indicates the end of a label in a switch statement:
switch (c) {

case 'a': printf ("It was an 'a'\n"); break;

case 'b': printf ("It was a 'b'\n"); break;

default: printf ("none of them\n");

}

Equal Sign

The equal sign separates variable definitions from initialization lists:
int i = 10;
char c[] = { 'a', 'b', 'c' };

It is also used as an assignment operator.

Data Types

A User Language Program can define variables of different types, representing the
different kinds of information available in the EAGLE data structures.

The four basic data types are

char for single characters
int for integral values
real for floating point values

string for textual information

Besides these basic data types there are also high level Object Types, which
represent the data structures stored in the EAGLE data files.

The special data type void is used only as a return type of a function, indicating that
this function does not return any value.

24

EAGLE User Language — Version 9.2.0

char

The data type char is used to store single characters, like the letters of the alphabet,
or small unsigned numbers.

A variable of type char has a size of 8 bit (one byte), and can store any value in the
range 0. .255.

See also Operators, Character Constants

[

int

The data type int is used to store signed integral values, like the coordinates of an
object.

A variable of type int has a size of 32 bit (four byte), and can store any value in the
range -2147483648..2147483647.

See also Integer Constants

real

The data type real is used to store signed floating point values, like the grid
distance.

A variable of type real has a size of 64 bit (eight byte), and can store any value in
the range +2.2e-308..+1.7e+308 with a precision of 15 digits.

See also Real Constants

string

The data type string is used to store textual information, like the name of a part or
net.

A variable of type string is not limited in it's size (provided there is enough
memory available).

Variables of type string are defined without an explicit size. They grow
automatically as necessary during program execution.

The elements of a string variable are of type int and can be accessed individually
by using [index]. The first character of a string has the index o:

25

EAGLE User Language — Version 9.2.0

string s = "Layout";
printf ("Third char is: %c\n", s[2]);

This would print the character 'y'. Note that s (2] returns the third character of s!

A lossless conversion to char is possible for standard ASCII strings:

"Layout";

string s =
= s[2];

char c

See also Operators, Builtin Functions, String Constants

Implementation details

The data type string is actually implemented like native C-type zero terminated

strings. Looking at the following variable definition
string s = "abcde";

s[4] is the character 'e', and s[5] is the character '\o', or the integer value 0x00.
This fact may be used to determine the end of a string without using

the strien () function, as in

for (int i = 0; s[i]; ++1i) {
// do something with s[i]
}

It is also perfectly ok to "cut off" part of a string by "punching" a zero character
into it:

string s = "abcde";

s[3] = 0;

This will result in s having the value "abc". Note that everything following the zero
character will actually be gone, and it won't come back by restoring the original
character. The same applies to any other operation that sets a character to 0, for
instance --s[3].

Type Conversions

The result type of an arithmetic expression, such as a + b, where a and b are
different arithmetic types, is equal to the "larger" of the two operand types.

Arithmetic types are char, int and real (in that order). So if, e.g. a is of
type int and b is of type real, the result of the expression a + b would be real.

See also Typecast

Typecast

The result type of an arithmetic expression can be explicitly converted to a different
arithmetic type by applying a typecast to it.

The general syntax of a typecast is

26

EAGLE User Language — Version 9.2.0

type (expression)
where type 1S one of char, int Or real, and expression 1S any arithmetic expression.

When typecasting a real expression to int, the fractional part of the value is
truncated!

See also Type Conversions

Object Types

The EAGLE data structures are stored in XML files:

o Library (*.1br)
e Schematic (*.sch)
o Board (*.brd)

These data files contain a hierarchy of objects. In a User Language Program you

can access these hierarchies through their respective builtin access statements:
library (L) { ... }

schematic(S) { ... }

board(B) { ... }

These access statements set up a context within which you can access all of the
objects contained in the library, schematic or board.

The properties of these objects can be accessed through members.
There are two kinds of members:

o Data members
o Loop members

Data members immediately return the requested data from an object. For example,
in
board (B) {
printf ("$s\n", B.name);
}
the data member name of the board object B returns the board's name.

Data members can also return other objects, as in
board (B) {
printf ("$£f\n", B.grid.size);
}
where the board's grid data member returns a grid object, of which the size data

member then returns the grid's size.

Loop members are used to access multiple objects of the same kind, which are
contained in a higher level object:

board (B) {
B.elements (E) {

27

EAGLE User Language — Version 9.2.0

printf ("$-8s %-8s\n", E.name, E.value);
}
}

This example uses the board's elements() loop member function to set up a loop
through all of the board's elements. The block following

the B.elements (E) statement is executed in turn for each element, and the current
element can be referenced inside the block through the name .

Loop members process objects in alpha-numerical order, provided they have a
name.

A loop member function creates a variable of the type necessary to hold the
requested objects. You are free to use any valid name for such a variable, so the
above example might also be written as

board (MyBoard) {
MyBoard.elements (TheCurrentElement) ({
printf ("$-8s %-8s\n", TheCurrentElement.name, TheCurrentElement.value);
}
}

and would do the exact same thing. The scope of the variable created by a loop
member function is limited to the statement (or block) immediately following the
loop function call.

Object hierarchy of a Library:

LIBRARY
GRID
LAYER
DEVICESET
DEVICE
GATE
FOOTPRINT
CONTACT
PAD
SMD
CIRCLE
HOLE
RECTANGLE
FRAME
DIMENSTION
TEXT
WIRE
POLYGON
WIRE
PACKAGE3D
SYMBOL
PIN
CIRCLE
RECTANGLE
FRAME
DIMENSTION
TEXT
WIRE

POLYGON
WIRE

28

EAGLE User Language — Version 9.2.0

Object hierarchy of a Schematic:

SCHEMATIC
GRID
LAYER
LTIBRARY
ATTRIBUTE
VARIANTDEF
PART
ATTRIBUTE
VARIANT
SHEET
CIRCLE
RECTANGLE
FRAME
DIMENSTION
TEXT
WIRE
POLYGON
WIRE
INSTANCE
ATTRIBUTE
MODULEINST
BUS
SEGMENT
LABEL
TEXT
WIRE

WIRE

NET
SEGMENT
JUNCTION
PINREF
PORTREF
TEXT
WIRE
MODULE
PORT
PART

SHEET
(same as above)

Change note from version 5 to version 6, compatibility

« Since version 6 the instance is in the hierarchy no longer below the part but

below the sheet.
o The part is no longer below the sheet, but below the schematic.

For compatibility reasons the access by the according member functions is further
supported, but the behaviour of the Object Functions reflects the new hierarchy.

Object hierarchy of a Board:

BOARD
GRID

LAYER
LIBRARY

29

EAGLE User Language — Version 9.2.0

ATTRIBUTE
VARIANTDEF
CIRCLE
HOLE
RECTANGLE
FRAME
DIMENSTION
TEXT
WIRE
POLYGON
WIRE
ELEMENT
ATTRIBUTE
VARIANT
SIGNAL
CONTACTREF
POLYGON
WIRE
VIA
WIRE

UL_ARC

Data members
anglel real (start angle, 0.0...359.9)
angle2 real (end angle, 0.0...719.9)
cap int (Cap_...)
layer int
radius int
width int
x1, yl int (starting point)
x2, y2 int (end point)
xc, yc int (center point)

See also UL WIRE

Constants

CAP_FLAT flat arc ends
CAP_ROUND round arc ends

Note

Start and end angles are defined mathematically positive (i.e. counterclockwise),
with anglel < angle2. In order to assure this condition, the start and end point of an

UL_ARC may be exchanged with respect to the UL_WIRE the arc has been
derived from.

Example

board (B) {
B.wires (W) {
if (W.arc)

30

EAGLE User Language — Version 9.2.0

printf ("Arc: (%f %f), (%f %f), (%f %f)\n",
uZ2mm (W.arc.x1), u2mm(W.arc.yl), u2mm(W.arc.x2),
uZ2mm (W.arc.y2), u2mm(W.arc.xc), u2mm(W.arc.yc));

}
}

UL_AREA

Data members
x1, yl1 int (lower left corner)
x2, y2 int (upper right corner)
See
also UL _BOARD, UL DEVICE, UL FOOTPRINT, UL SHEET, UL SYMBOL

A UL_AREA is an abstract object which gives information about the area covered
by an object. For a UL_FOOTPRINT or UL_SYMBOL in a UL_ELEMENT or
UL_INSTANCE context, respectively, the area is given in absolute drawing
coordinates, including the offset of the element or instance and including the area
of moved texts after REPOSITION.

Example
board (B) {
printf ("Area: (%f %f), (%f %f)\n",
uZ2mm (B.area.x1), u2mm(B.area.yl), u2mm(B.area.x2),

uZ2mm (B.area.y2)) ;

}

UL_ATTRIBUTE

Data members

constant int (O=variable, i.e. allows overwriting, 1=constant - see note)
defaultvalue string (see note)

display int (ATTRIBUTE DISPLAY FLAG ...)

name string

text UL_TEXT (see note)

value string

See also UL_DEVICE, UL PART, UL INSTANCE, UL ELEMENT

Constants
ATTRIBUTE DISPLAY FLAG OFF nothing is displayed

ATTRIBUTE_DISPLAY FLAG_VALUE value is displayed
ATTRIBUTE_DISPLAY FLAG_NAME name is displayed

A UL_ATTRIBUTE can be used to access the attributes that have been defined in
the library for a device, or assigned to a part in the schematic or board.

31

EAGLE User Language — Version 9.2.0

Note

display contains a bitwise or'ed value consisting

of ATTRIBUTE DIsPLAY FLAG ... and defines which parts of the attribute are actually
drawn. This value is only valid if disp1ay is used in a UL_INSTANCE or
UL_ELEMENT context.

In a UL_ELEMENT context constant only returns an actual value if f/b annotation
18 active, otherwise it returns 0.

The defaultvalue member returns the value as defined in the library (if different
from the actual value, otherwise the same as value). In a UL_ELEMENT
context defaultvalue only returns an actual value if f/b annotation is active,
otherwise an empty string is returned.

The text member is only available in a UL_INSTANCE or UL_ELEMENT
context and returns a UL_TEXT object that contains all the text parameters. The
value of this text object is the string as it will be displayed according to the
UL_ATTRIBUTE's 'display' parameter. If called from a different context, the data
of the returned UL_TEXT object is undefined.

For global attributes only name and value are defined.

Example

schematic (SCH) {
SCH.parts (P) {
P.attributes (A) {
printf ("$s = %$s\n", A.name, A.value);
}
}
}
schematic (SCH) {
SCH.attributes (A) { // global attributes
printf ("$s = %$s\n", A.name, A.value);
}
}

UL_BOARD

Data members

alwaysvectorfont int (ALWAYS VECTOR FONT ..., see note)
area UL_AREA

checked int (see note)

description string

grid UL GRID

headline §gj£g

name string (see note)

verticaltext int (VERTICAL TEXT ...)

32

EAGLE User Language — Version 9.2.0

Loop members

attributes () UL_ATTRIBUTE (see note)
circles () UL_CIRCLE
classes() UL_CLASS
dimensions () UL_DIMENSION
elements () UL_ELEMENT
errors () UL_ERROR
frames () UL_FRAME

holes () UL_HOLE

layers () UL _LAYER
libraries() UL_LIBRARY
polygons () UL_POLYGON
rectangles () UL _RECTANGLE
signals () UL_SIGNAL

texts () UL_TEXT
variantdefs () UL_VARIANTDEF
wires () UL_WIRE

See also UL_LIBRARY, UL SCHEMATIC, variant()

Constants

ALWAYS VECTOR FONT GUI

ALWAYS VECTOR FONT PERSISTENT
VERTICAL TEXT UP
VERTICAL TEXT DOWN

alwaysvectorfont is set in the user interface dialog
alwaysvectorfont is set persistent in this board
reading direction for vertical texts: up

reading direction for vertical texts: down

Note

The value returned by a1waysvectorfont can be used in boolean context or can be
masked with the aLways vecTorR FONT ... constants to determine the source of this
setting, as in

if (B.alwaysvectorfont) ({
// alwaysvectorfont is set in general
}

if (B.alwaysvectorfont & ALWAYS VECTOR FONT GUI) {
// alwaysvectorfont is set in the user interface

}
The value returned by checked can be used in boolean context and is set only after a
recent 'Design Rule Check' (DRC).

The name member returns the full file name, including the directory.

The attributes () loop member loops through the global attributes.

Example

board (B) {
B.elements (E) printf ("Element: %s\n", E.name);
B.signals(S) printf("Signal: %s\n", S.name);

}

33

EAGLE User Language — Version 9.2.0

UL_BUS

Data members

name string (BUS NAME LENGTH)
Loop members

segments () UL _SEGMENT
See also UL _SHEET

Constants

BUS NAME LENGTH
- - have any length)

Example

schematic (SCH) {
SCH.sheets (SH) {
SH.busses (B) printf ("Bus: %s\n", B.name);
}
}

UL_CIRCLE

Data members
layer int
radius int
width int
X, ¥ int (center point)

See also UL BOARD, UL FOOTPRINT, UL SHEET, UL SYMBOL

Example

board (B) {
B.circles (C) {
printf ("Circle: (%f %f), r=%d, w=%d\n",
u2mm (C.x), u2mm(C.y), u2mm(C.radius), u2mm(C.width));
}
}

UL_CLASS

Data members
clearance[number] int (see note)

drill int
name string (see note)
number int
width int

max. length of a bus name (obsolete - as from version 4 bus names can

See also Design Rules, UL I?ET, UL SIGNAL, UL SCHEMATIC, UL BOARD

34

EAGLE User Language — Version 9.2.0

Note

The c1earance member returns the clearance value between this net class and the
net class with the given number. If the number (and the square brackets) is
ommitted, the net class's own clearance value is returned. If a number is given, it
must be between 0 and the number of this net class.

If the name member returns an empty string, the net class is not defined and
therefore not in use by any signal or net.

Example

board (B) {
B.signals (S) {
printf ("$-10s %d %s\n", S.name, S.class.number, S.class.name);
}
}

UL_CONTACT

Data members

name string (CONTACT NAME LENGTH)
pad UL_PAD

signal string

smd UL _SMD

X, ¥ int (center point, see note)

Loop members
polygons () UL _POLYGON (of arbitrary pad shapes)
wires () UL_WIRE (of arbitrary pad shapes)

See
also UL FOOTPRINT, UL PAD, UL SMD, UL CONTACTREF, UL PINREF

Constants

max. recommended length of a contact name (used in formatted

CONTACT NAME LENGTH
- - output only)

Note

The signal data member returns the signal this contact is connected to (only
available in a board context).

The coordinates (x, y) of the contact depend on the context in which it is called:

o if the contact is derived from a UL_LIBRARY context, the coordinates of
the contact will be the same as defined in the package drawing
 in all other cases, they will have the actual values from the board

35

EAGLE User Language — Version 9.2.0

Example

library (L) {
L.footprints (FPT) {
FPT.contacts (C) {
printf ("Contact: '%s', (%f %f)\n",
C.name, u2mm(C.x), u2mm(C.y));
}
}
}

UL_CONTACTREF

Data members
contact UL _CONTACT
element UL _ELEMENT
route int (CONTACT ROUTE ...)
routetag string (see note)

See also UL_SIGNAL, UL PINREF

Constants

CONTACT _ROUTE_ALL must explicitly route to all contacts
CONTACT_ROUTE_ANY may route to any contact

Note

If route has the value conTacT ROUTE ANY, the routetag data member returns an
additional tag which describes a group of contactrefs belonging to the same pin.

Example
board (B) {
B.signals (S) {
printf ("Signal '%s'\n", S.name);

S.contactrefs (C) {
printf ("\t%s, %s\n", C.element.name, C.contact.name);
}
}
}

UL_DEVICE

Data members
activetechnology string (see note)

area UL_AREA
description SUng
headline string
library string

36

EAGLE User Language — Version 9.2.0

libraryurn string (see note)

libraryversion int (see note)

name string (DEVICE NAME LENGTH)

footprint UL_FOOTPRINT (new as of EAGLE 9.1, see note)
prefix string (DEVICE PREFIX LENGTH)

technologies string (see note)

value string ("On" or "Off")

Loop members
attributes() UL_ATTRIBUTE (see note)
gates () UL_GATE
packages3d() UL _PACKAGE3D
See also UL _DEVICESET, UL LIBRARY, UL PART

Constants

max. recommended length of a device name (used in formatted
output only)
max. recommended length of a device prefix (used in formatted
output only)

DEVICE NAME LENGTH

DEVICE PREFIX LENGTH

All members of UL_DEVICE, except for name and technologies, return the same
values as the respective members of the UL_DEVICESET in which the
UL_DEVICE has been defined. The name member returns the name of the package
variant this device has been created for using the PACKAGE command. When
using the description text keep in mind that it may contain newline characters

('\n').
Note

The value returned by the activetechnology member depends on the context in
which it is called:

« if the device is derived from the deviceset that is currently edited in the
library editor window, the active technology, set by
the TECHNOLOGY command, will be returned

« if the device is derived from a UL_PART, the actual technology used by the
part will be returned

o otherwise an empty string will be returned.

The footprint data member returns the footprint that has been assigned to the
device through a PACKAGE command. It can be used as a boolean function to
check whether a footprint has been assigned to a device (see example below). (Note
that the footprint data memmber is new as of EAGLE 9.1. For backwards
compatibility with previous EAGLE versions, package is also supported.)

The value returned by the technologies member depends on the context in which it
is called:

37

EAGLE User Language — Version 9.2.0

o if the device is derived from a UL_DEVICESET, technologies Wwill return a
string containing all of the device's technologies, separated by blanks

« if the device is derived from a UL_PART, only the actual technology used
by the part will be returned.

The attributes () loop member takes an additional parameter that specifies for
which technology the attributes shall be delivered (see the second example below).

The 1ibraryurn and libraryversion are only applicable if this UL_DEVICE comes
from a managed library. If not, 1ibraryurn will be the empty string
and libraryversion will be -1.

Examples

library (L) {
L.devicesets (S) {
S.devices (D) {
if (D.footprint)
printf ("Device: %s, Footprint: %s\n", D.name, D.footprint.name);
D.gates (G) {
printf ("\t%s\n", G.name);
}
}
}
}
library (L) {
L.devicesets (D
DS.devices (D
string t[]
int n = strsplit(t, D.technologies, ' '");
for (int i = 0; 1 < n; i++) {
D.attributes (A, t[i]) {
printf ("$s = %$s\n", A.name, A.value);
}
}

S) |
) A

UL_DEVICESET

Data members

activedevice UL_DEVICE (see note)

area UL_AREA

description §gj£g

headline string (see note)

library string

libraryurn string (see note)
libraryversion int (see note)
locallymodified int (see note)
librarylocallymodified int (see note)

name string (DEVICE NAME LENGTH)
prefix string (DEVICE PREFIX LENGTH)

38

EAGLE User Language — Version 9.2.0

urn string (see note)
value string ("On" or "Off")

Loop members
devices () UL _DEVICE
gates () UL_GATE
See also UL _DEVICE, UL LIBRARY, UL PART

Constants

DEVICE NAME LENGTH max. recommended length of a device name (used in formatted
- - output only)

DEVICE PREFIX LENgT aX. recommended length of a device prefix (used in formatted
- - output only)

Note

If a deviceset is currently edited in a library editor window,

the activedevice member returns the active device, selected by

a PACKAGE command. It can be used as a boolean function to check the
availability of such an activedevice (see example below).

The description member returns the complete descriptive text as defined with
the DESCRIPTION command, while the nead1ine member returns only the first
line of the description, without any HTML tags. When using the description text
keep in mind that it may contain newline characters ('\n").

The urn contains a unique identifier for this deviceset, of the
form urn:adsk.eagle:component:123/4, where the portion after the / is the version
of the deviceset. To get the base URN (without version), use urnbase(); to get the

version, use urnversion().

The 1ibraryurn and libraryversion are only applicable if this UL_DEVICESET
comes from a managed library. If not, 1ibraryurn will be the empty string
and libraryversion will be -1.

The 10callymodified member will be 0, if this UL_DEVICESET doesn't have local
modifications, or 1, if this UL_DEVICESET has local modifications.

The 1ibrarylocallymodified member will be O (if this UL_DEVICESET doesn't
come from a locally-modified library) or 1 (if this UL_DEVICESET comes from a
locally-modified library).

Example

library (L) {
L.devicesets (D) {
printf ("Device set: %s, Description: %s\n", D.name, D.description);
D.gates (G) {
printf ("\t%s\n", G.name);

39

EAGLE User Language — Version 9.2.0

}
}
}
if (deviceset)
deviceset (DS) {
if (DS.activedevice)
printf ("Active Device: %s\n", DS.activedevice.name) ;

}

UL_DIMENSION

Data members
dtype int (DIMENSION ...)
layer int
extlength int
extoffset int
extwidth int
precision int

ratio int

size int

unit int (GRID UNIT ...)
visible int (unit, 0=off, 1=on)

width int

x1l, yl int (first reference point)

X2, y2 int (second reference point)
x3, y3 int (alignment reference point)

Loop members
texts() UL_TEXT
wires() UL_WIRE

See also UL_BOARD, UL GRID, UL FOOTPRINT, UL SHEET, UL SYMBOL

Constants

DIMENSION_PARALLEL linear dimension with parallel measurement line
DIMENSION_HORIZONTAL linear dimension with horizontal measurement line
DIMENSION_VERTICAL linear dimension with vertical measurement line
DIMENSION RADIUS radial dimension

DIMENSION DIAMETER diameter dimension

DIMENSION ANGLE angle dimension

DIMENSION LEADER an arbitrary pointer

Note

The texts () and wires () loop members loop through all the texts and wires the
dimension consists of.

Example

board (B) {
B.dimensions (D) {

40

EAGLE User Language — Version 9.2.0

printf ("Dimension: (%f %f), (%f %f), (%f %f)\n",
uZ2mm (D.x1), u2mm(D.yl), u2mm(D.x2), uZ2mm(D.y2), u2mm(D.x3),
u2mm (D.y3)) ;
}
}

UL_ELEMENT

Data members

angle real (0.0...359.9)
attribute[] string (see note)

column string (see note)

locked int

mirror int

name string (ELEMENT NAME LENGTH)

footprint UL_FOOTPRINT (new as of EAGLE 9.1, see note)
package3d UL_PACKAGE3D (see note)

populate int (O=do not populate, 1=populate)
row string (see note)

smashed int (see note)

spin int

value string (ELEMENT VALUE_LENGTH)

X, ¥ int (origin point)

Loop members
attributes() UL_ATTRIBUTE
texts () UL_TEXT (see note)
See also UL_BOARD, UL _CONTACTREF

Constants

FLEMENT NAME TENGTH MaX. recommended length of an element name (used in formatted
- - output only)

ELEMENT VALUE LEngTh MaX. recommended length of an element value (used in formatted
- - output only)

Note

The attribute] member can be used to query a UL_ELEMENT for the value of a
given attribute (see the second example below). The returned string is empty if
there is no attribute by the given name, or if this attribute is explicitly empty.

The texts () member only loops through those texts of the element that have been
detached using REPOSITION, and through the visible texts of any attributes
assigned to this element. To process all texts of an element (e.g. when drawing it),
you have to loop through the element's own texts () member as well as

the texts () member of the element's footprint.

41

EAGLE User Language — Version 9.2.0

Note that the footprint member is new as of EAGLE 9.1. For backwards
compatibility with older versions, package is available as an alias.

Not all UL_ELEMENT's have 3D packages. The package3d member can be used as
a boolean to test whether or not a 3D package is present, e.g. if (E.package3d).

angle defines how many degrees the element is rotated counterclockwise around its
origin.

The column and row members return the column and row location within
the frame in the board drawing. If there is no frame in the drawing, or the element
is placed outside the frame, a '2' (question mark) is returned.

The smashed member tells whether the element is smashed. This function can also
be used to find out whether there is a detached text parameter by giving the name of
that parameter in square brackets, as in smashed["varLUE"]. This is useful in case you
want to select such a text with the MOVE command by doing move rs>varue. Valid
parameter names are "NAME" and "VALUE", as well as the names of any user
defined attributes. They are treated case insensitive, and they may be preceded by

a '>' character.

Examples

board (B) {
B.elements (E) {
printf ("Element: %s, (%f %f), Footprint=%s\n",
E.name, uZ2mm(E.x), u2mm(E.y), E.footprint.name);
}
}
board (B) {
B.elements (E) {
if (E.attribute["REMARK"])
printf ("$s: %s\n", E.name, E.attribute["REMARK"]) ;
}
}

UL_ERROR

Data members

area UL_AREA

area2 UL_AREA (see note)
code int (identification number)
description string

layer int

modulename string

sl string (see note)

s2 string

s3 strin

s4 string

s5 strin

42

EAGLE User Language — Version 9.2.0

s6 string

sheet int (sheet number)
signature string (signature string)
state int (ERROR_STATE . ..)
type int (ERROR_TYPE ...)
X, y int (center point)

Loop members
contours () UL _WIRE (see note)
See also UL BOARD, UL _SCHEMATIC

Constants

ERROR_STATE_ACTIVE error has not yet been approved or processed
ERROR_STATE APPROVED error has been approved
ERROR_STATE_PROCESSED error has been processed

ERROR_TYPE NONE no error

ERROR_TYPE WARNING warning

ERROR_TYPE ERROR error

ERROR TYPE CONSISTENCY consistency error

Note

A UL_ERROR is an abstract object which gives informations about ERC/DRC
errors.

The members 1ayer and contours () are only available in UL_BOARD context and
the members area2, modulename, s1..s6 and sheet are only available in
UL_SCHEMATIC context.

The member area2 is a second area, only available on some ERC errors and refers
to the corresponding area in the board. The members s1..s6 are string values,
which contain for ERC errors specific informations like names.

The contours () loop member loops through the contour wires of the DRC error
polygon.

Example

string sl;
string ErrLst[];
int ErrCnt = 0;
string ErrLstHeader;
if (board) board(B) {
ErrLstHeader = "Code\tState\tDescription\tLayer\tSignature";
if (B.checked) {
B.errors (ER) {
if (ER.state == ERROR STATE ACTIVE) {
sprintf (s1, "%d\t%d\t%s\t%d\t%s", ER.code, ER.state,
ER.description, ER.layer, ER.signature);
ErrLst [ErrCnt++] = sl;

43

EAGLE User Language — Version 9.2.0

}
}
if (schematic) schematic (SCH) {
ErrLstHeader =
"Code\tState\tDescription\tSheet\tModule\tsl\ts2\ts3\ts4\ts5\ts6";
if (SCH.checked) {
SCH.errors (ER) {
if (ER.state == ERROR STATE ACTIVE) {
sprintf (sl, "$d\t%d\t%s\t%d\t%s\t%s\t%s\t3s\t%s\t%s\t%s",
ER.code, ER.state, ER.description, ER.sheet, ER.modulename, ER.sl, ER.s2,
ER.s3, ER.s4, ER.s5, ER.s06);
ErrLst [ErrCnt++] = sl;
}

}
}
dlgDialog ("Errors") {
int sel = -1;
dlgListView (ErrLstHeader, ErrLst, sel);
dlgPushButton ("+OK") dlgAccept()

i

UL_FRAME

Data members
columns int (-127...127)

rows int (-26...26)
border int (FRAME BORDER ...)
layer int

x1l, yl int (lower left corner)
X2, y2 int (upper right corner)
Loop members
texts() UL _TEXT
wires () UL_WIRE
See also UL _BOARD, UL _FOOTPRINT, UL SHEET, UL SYMBOL

Constants

FRAME BORDER BOTTOM bottom border is drawn
FRAME BORDER RIGHT right border is drawn

FRAME_BORDER_TOP top border is drawn

FRAME_BORDER_LEFT left border is drawn

Note

border contains a bitwise or'ed value consisting of FrRamMeE BorDER ... and defines

which of the four borders are actually drawn.

The texts () and wires () loop members loop through all the texts and wires the
frame consists of.

44

EAGLE User Language — Version 9.2.0

Example
board (B) {
B.frames (F) {
printf ("Frame: (%f %f), (%f %f)\n",

uZ2mm (F.x1), u2mm(F.yl), u2mm(F.x2), u2mm(F.y2));
}
}

UL_GATE

Data members
addlevel int (GATE ADDLEVEL ...)

name string (GATE NAME LENGTH)
swaplevel int

symbol UL_SYMBOL

X, ¥ int (origin point, see note)

See also UL DEVICE

Constants
GATE_ADDLEVEL_MUST must
GATE_ADDLEVEL_CAN can
GATE_ADDLEVEL_NEXT next

GATE_ADDLEVEL_REQUEST request
GATE ADDLEVEL ALWAYS ahNays

max. recommended length of a gate name (used in formatted output

GATE _NAME LENGTH
- - only)

Note

The coordinates of the origin point (x, y) are always those of the gate's position
within the device, even if the UL_GATE has been derived from a UL INSTANCE.

Example
library (L) {
L.devices (D) {
printf ("Device: %s, Footprint: %s\n", D.name, D.footprint.name);

D.gates (G) {
printf ("\t%s, swaplevel=%d, symbol=%s\n",
G.name, G.swaplevel, G.symbol.name)
}
}
}

UL_GRID

Data members

45

EAGLE User Language — Version 9.2.0

distance real

dots int (0=lines, 1=dots)
multiple int

on int (0O=off, 1=on)
unit int (GRID_UNIT ...)
unitdist int (GRID UNIT ...)

See also UL BOARD, UL LIBRARY, UL SCHEMATIC, Unit Conversions

Constants

GRID UNIT MIC microns
GRID UNIT MM millimeter
GRID UNIT MIL mil

GRID UNIT INCH inch

Note

unitdist returns the grid unit that was set to define the actual grid size (returned
by distance), while unit returns the grid unit that is used to display values or
interpret user input.

Example

board (B) {
printf ("Gridsize=%f\n", B.grid.distance) ;

}

UL_HOLE

Data members
diameter[layer] int (see note)

drill int
drillsymbol int
X, ¥ int (center point)

See also UL_BOARD, UL FOOTPRINT

Note

diameter[] is only defined vor layers 1ayEr_TsTop and 1ayER_BsToP and returns the
diameter of the solder stop mask in the given layer.

drillsymbol returns the number of the drill symbol that has been assigned to this

drill diameter (see the manual for a list of defined drill symbols). A value
of 0 means that no symbol has been assigned to this drill diameter.

Example

46

EAGLE User Language — Version 9.2.0

board (B) {
B.holes (H) {
printf ("Hole: (%f %f), drill=%f\n",
uZ2mm (H.x), u2mm(H.y), u2mm(H.drill));
}
}

UL_INSTANCE

Data members

angle real (0, 90, 180 and 270)
column string (see note)

gate UL GATE

mirror QE__

name string (INSTANCE NAME LENGTH)
part UL_PART

row string (see note)

sheet int (O=unused, >0=sheet number)
smashed int (see note)

value string (PART VALUE LENGTH)

X, ¥ int (origin point)

Loop members
attributes() UL_ATTRIBUTE (see note)
texts () UL_TEXT (see note)
xrefs () UL_GATE (see note)

See also UL PINREF

Constants

max. recommended length of an instance name (used in formatted
output only)

max. recommended length of a part value (instances do not have a
value of their own!)

INSTANCE NAME LENGTH

PART VALUE LENGTH

Note

The attributes () member only loops through those attributes that have been
explicitly assigned to this instance (including smashed attributes).

The texts () member only loops through those texts of the instance that have been
detached using REPOSITION, and through the visible texts of any attributes
assigned to this instance. To process all texts of an instance, you have to loop
through the instance's own texts () member as well as the texts () member of the
instance's gate's symbol. If attributes have been assigned to an

instance, texts () delivers their texts in the form as they are currently visible.

The column and row members return the column and row location within
the frame on the sheet on which this instance is invoked. If there is no frame on that

47

EAGLE User Language — Version 9.2.0

sheet, or the instance is placed outside the frame, a '»' (question mark) is returned.
These members can only be used in a sheet context.

The smashed member tells whether the instance is smashed. This function can also
be used to find out whether there is a detached text parameter by giving the name of
that parameter in square brackets, as in smashed["vaLUE"]. This is useful in case you
want to select such a text with the MOVE command by doing move rs>varue. Valid
parameter names are "NAME", "VALUE", "PART" and "GATE", as well as the
names of any user defined attributes. They are treated case insensitive, and they
may be preceded by a '>' character.

The xrefs () member loops through the contact cross-reference gates of this
instance. These are only of importance if the ULP is going to create a drawing of
some sort (for instance a DXF file).

Example
schematic (S) {
S.parts (P) {
printf ("Part: %$s\n", P.name);
P.instances (I) {
if (I.sheet != 0)
printf ("\t%s used on sheet %d\n", I.name, I.sheet);

}
}
}

UL_JUNCTION

Data members

diameter int

X, ¥ int (center point)
See also UL_SEGMENT

Example

schematic (SCH) {
SCH.sheets (SH) {
SH.nets (N) {
N.segments (SEG) {
SEG.junctions (J) {
printf ("Junction: (%f %f)\n", u2mm(J.x), u2mm(J.y));

UL_LABEL

48

EAGLE User Language — Version 9.2.0

Data members
angle real (0.0...359.9)
layer int
mirror int

spin int

text UL_TEXT

X, ¥ int (origin point)

xref int (O=plain, 1=cross-reference)

Loop members
wires () UL_WIRE (see note)
See also UL_SEGMENT

Note

If xref returns a non-zero value, the wires () loop member loops through the wires
that form the flag of a cross-reference label. Otherwise it is an empty loop.

The angle, layer, mirror and spin members always return the same values as those
of the UL_TEXT object returned by the text member. The x and y members of the
text return slightly offset values for cross-reference labels (non-zero xref),
otherwise they also return the same values as the UL_LABEL.

xref 1S only meaningful for net labels. For bus labels it always returns 0.

Example

sheet (SH) {
SH.nets (N) {
N.segments (S) {
S.labels (L) {
printf ("Label: (%f %f) '$s'", u2mm(L.x), u2mm(L.y), L.text.value);
}
}
}
}

UL_LAYER

Data members

color int

£i11 int

name string (LAYER NAME LENGTH)
number int

used int (O=unused, 1=used)

visible int (O=off, 1=on)
See also UL BOARD, UL LIBRARY, UL SCHEMATIC

Constants

49

EAGLE User Language — Version 9.2.0

max. recommended length of a layer name (used in formatted output
only)

LAYER TOP layer numbers
LAYER BOTTOM
LAYER PADS
LAYER VIAS
LAYER UNROUTED
LAYER DIMENSION
LAYER TPLACE
LAYER BPLACE
LAYER TORIGINS
LAYER BORIGINS
LAYER TNAMES
LAYER BNAMES
LAYER TVALUES
LAYER BVALUES
LAYER TSTOP
LAYER BSTOP
LAYER TCREAM
LAYER BCREAM
LAYER TFINISH
LAYER BFINISH
LAYER TGLUE
LAYER BGLUE
LAYER TTEST
LAYER BTEST
LAYER TKEEPOUT
LAYER BKEEPOUT
LAYER TRESTRICT
LAYER BRESTRICT
LAYER VRESTRICT
LAYER DRILLS
LAYER HOLES
LAYER MILLING
LAYER MEASURES
LAYER DOCUMENT
LAYER REFERENCE
LAYER_TDOCU
LAYER BDOCU
LAYER NETS
LAYER BUSSES
LAYER PINS
LAYER SYMBOLS
LAYER NAMES
LAYER VALUES
LAYER INFO
LAYER GUIDE

LAYER_USER lowest number for user defined layers (100)

LAYER NAME LENGTH

Example

board (B) {
B.layers (L) printf ("Layer %3d %s\n", L.number, L.name);

}

UL_LIBRARY

Data members

50

EAGLE User Language — Version 9.2.0

editable int (see note)

description string (see note)

grid UL_GRID

headline string

id string (see note)

name string (LIBRARY NAME LENGTH, see note)
Loop members

devices () UL_DEVICE

devicesets() UL_DEVICESET

layers () UL_LAYER

footprints() UL _FOOTPRINT (new as of EAGLE 9.1, see note)
packages3d() UL _PACKAGE3D
symbols () UL_SYMBOL

See also UL_BOARD, UL SCHEMATIC

Constants

max. recommended length of a library name (used in formatted

LIBRARY NAME LENGTH
- - output only)

The devices () member loops through all the package variants and technologies of
all UL_DEVICESETsS in the library, thus resulting in all the actual device
variations available. The devicesets () member only loops through the
UL_DEVICESETsS, which in turn can be queried for their UL_DEVICE members.

Note

The footprints () member is new as of EAGLE 9.1. For backwards compatibility
with previous EAGLE versions, packages() is available as an alias.

The description member returns the complete descriptive text as defined
with the DESCRIPTION command, while the headline member returns only the
first line of the description, without any HTML tags. When using

the description text keep in mind that it may contain newline characters
('\n'). The description and headline information is only available within a
library drawing, not if the library is derived form a UL BOARD or

UL SCHEMATIC context.

If the library is derived form a UL BOARD or UL SCHEMATIC
context, name returns the pure library name (without path or extension).
Otherwise it returns the full library file name.

The id member is only applicable if this UL LIBRARY refers to a managed
library. If not, id will be the empty string.

The editable member returns the value 1, if the library is editable by the
user (the user owns the library). Otherwise it returns O.

Example

library (L) {
L.devices (D) printf ("Dev: %s\n", D.name);

51

EAGLE User Language — Version 9.2.0

L.devicesets (D) printf ("Dev: %$s\n", D.name);
L.footprints (F) printf ("Fpt: %$s\n", F.name);
L.packages3d(P) printf ("3dp: %s\n", P.name);
L.symbols (S) printf ("Sym: %s\n", S.name);

}
schematic (S) {
S.libraries (L) printf ("Library: %s\n", L.name);

}

UL MODULE

Data members

dx, dy int (size)
description string
headline sning
name string
prefix strin

Loop members
parts () UL_PART
ports () UL_PORT
sheets () UL_SHEET

variantdefs () UL VARIANTDEF
See also UL PORT, UL SCHEMATIC

Example

schematic (SCH) {
SCH.modules (M) {
M.parts (P) printf ("Part: %$s\n", P.name);
}
}

UL MODULEINST

Data members

angle real (0, 90, 180 and 270)
column string (see note)

mirror int

module UL _MODULE

modulevariant string (selected variantdef of module)
name string (INSTANCE NAME LENGTH)
offset int

row string (see note)

sheet int (sheet number)

smashed int (see note)

X, ¥ int (origin point)

Loop members
texts() UL _TEXT (see note)

wires() UL_WIRE
See also UL PORTREF, UL VARIANTDEF

Constants

52

EAGLE User Language — Version 9.2.0

max. recommended length of an instance name (used in formatted

INSTANCE NAME LENGTH
- - output only)

Note

The texts () member loops through all texts of the module instance, no
matter if smashed or not.

The column and row members return the column and row location within

the frame on the sheet on which this instance is invoked. If there is no
frame on that sheet, or the instance is placed outside the frame,

a '?' (question mark) is returned. These members can only be used in a
sheet context.

The smashed member tells whether the instance is smashed. This function can
also be used to find out whether there is a detached text parameter by
giving the name of that parameter in square brackets, as

in smashed["NAME"]. This is useful in case you want to select such a text
with the MOVE command by doing MOVE MOD1>NAME .

Example

schematic (SCH) {
SCH.sheets (SH) {
SH.moduleinsts (MI) {
printf ("Module instance %s is located on sheet %d\n", MI.name,
MI.sheet) ;
}
}

UL NET

Data members
class UL_CLASS
column string (see note)

name string (NET NAME LENGTH)
row string (see note)

Loop members
portrefs() UL _PORTREF
pinrefs () UL_PINREF (see note)

segments () UL_SEGMENT (see note)
See also UL SHEET, UL SCHEMATIC

Constants

max. recommended length of a net name (used in formatted output

NET NAME LENGTH
- - only)

Note

The pinrefs () loop member can only be used if the net is in a schematic
context.

53

EAGLE User Language — Version 9.2.0

The segments () loop member can only be used if the net is in a sheet
context.

The column and row members return the column and row locations within

the frame on the sheet on which this net is drawn. Since a net can extend
over a certain area, each of these functions returns two values, separated
by a blank. In case of column these are the left- and rightmost columns
touched by the net, and in case of row it's the top- and bottommost row.

When determining the column and row of a net on a sheet, first the column
and then the row within that column is taken into account. Here XREF labels
take precedence over normal labels, which again take precedence over net
wires.

If there is no frame on that sheet, "? ?" (two question marks) is returned.
If any part of the net is placed outside the frame, either of the values
may be '?' (question mark). These members can only be used in a sheet
context.

If the net is retrieved with UL SCHEMATIC.allnets() the valid members
are: name, class and pinrefs (). The pinrefs () loop member loops also
through the virtual pinrefs generated by module instances.

Example

schematic (S) {
S.nets (N) {
printf ("Net: %s\n", N.name);
// N.segments (SEG) will NOT work here!
}
// or with virt. nets:
S.allnets (N) {
printf ("Net: %s\n", N.name);
}
}
schematic (S) {
S.sheets (SH) {
SH.nets (N) {
printf ("Net: %s\n", N.name);
N.segments (SEG) {
SEG.wires (W) {
printf ("\tWire: (%f %f) (%f %f)\n",
uZ2mm (W.x1), u2mm(W.yl), u2mm(W.x2), uZ2mm(W.y2));

UL FOOTPRINT (new as of EAGLE
9.1)

Data members

area UL_AREA
description strin
headline strin

54

EAGLE User Language — Version 9.2.0

library string

libraryurn string (see note)

libraryversion int (see note)

locallymodified int (see note)

librarylocallymodified int (see note)

name string (PACKAGE NAME LENGTH)

urn string (see note)
Loop members

circles() UL_CIRCLE

contacts () UL_CONTACT

dimensions () UL_DIMENSION

frames () UL_FRAME

holes () UL_HOLE

polygons () UL_POLYGON (see note)

rectangles() UL RECTANGLE

texts () UL_TEXT (see note)

wires () UL_WIRE (see note)

See also UL DEVICE, UL ELEMENT, UL LIBRARY, UL PACKAGE3D

Constants

max. recommended length of a package name (used in formatted

PACKAGE NAME LENGTH
- - output only)

Note

The UL FOOTPRINT object is new as of EAGLE 9.1. For backwards compatibility
with previous EAGLE versions, UL PACKAGE is available as an alias.

The description member returns the complete descriptive text as defined
with the DESCRIPTION command, while the headline member returns only the
first line of the description, without any HTML tags. When using

the description text keep in mind that it may contain newline characters

("\n').

If the UL FOOTPRINT is derived from a UL ELEMENT, the texts() member only
loops through the non-detached texts of that element.

If the UL FOOTPRINT is derived from a UL ELEMENT, polygons and wires
belonging to contacts with arbitrary pad shapes are available through the
loop members polygons () and wires () of this contact.

The urn contains a unique identifier for this footprint, of the

form urn:adsk.eagle:footprint:123/4, where the portion after the / is the
version of the footprint. To get the base URN (without version),

use urnbase(); to get the version, use urnversion().

The libraryurn and libraryversion are only applicable if this UL FOOTPRINT
comes from a managed library. If not, libraryurn will be the empty string
and libraryversion will be -1.

The locallymodified member will be 0, if this UL FOOTPRINT doesn't have
local modifications, or 1, if this UL FOOTPRINT has local modifications.
The librarylocallymodified member will be O (if this UL FOOTPRINT doesn't

55

EAGLE User Language — Version 9.2.0

come from a locally-modified library) or 1 (if this UL FOOTPRINT comes from
a locally-modified library).

Example

library (L) {
L.footprints (FPT) {
printf ("Footprint: %s\n", FPT.name);

FPT.contacts (C) {

if (C.pad)

printf ("\tPad: %s, (%
C.name, u2mm (

else 1f (C.smd)
printf ("\tSmd: %s, (%
C.name, u2mm (

f %f)\n",
C.pad.x), u2mm(C.pad.y)):;

f %f)\n",
C.smd.x), u2mm(C.smd.y)) ;

}
}
board (B) {
B.elements (E) {
printf ("Element: %s, Footprint: %$s\n", E.name, E.footprint.name);

}

UL PACKAGE3D

Data members

description string
headline string

library sning
libraryurn string (see note)
libraryversion int (see note)
name string

urn string (see note)

See also UL DEVICE, UL ELEMENT, UL LIBRARY, UL FOOTPRINT

Note

The description member returns the complete descriptive text, while

the headline member returns only the first line of the description, without
any HTML tags. When using the description text keep in mind that it may
contain newline characters ('\n').

The urn contains a unique identifier for this 3D package, of the

form urn:adsk.eagle:package:123/4, where the portion after the / is the
version of the 3D package. To get the base URN (without version),

use urnbase(); to get the version, use urnversion().

The libraryurn and libraryversion are only applicable if this UL PACKAGE3D
comes from a managed library. If not, libraryurn will be the empty string
and libraryversion will be -1.

Example

library (L) {

56

EAGLE User Language — Version 9.2.0

L.packages3d (P3D) {

printf ("3D Package:

urnversion (P3D.urn)) ;
}
}
board (B) {
B.elements (E) {
printf ("Element:
if (E.package3d)
E.package3d.name,
else printf ("\n");
}

UL _PAD

Data members
angle

$s",
printf (",
urnbase (E.package3d.urn),

$s (%s,

E.name) ;
3D Package: %s

real (0.0...359.9)

Version %d)\n", P3D.name, urnbase (P3D.urn),

Version %d)\n",
urnversion (E.package3d.urn)) ;

diameter[layer] nt

drill int

drillsymbol int

elongation int

flags int (PAD FLAG ...)

name string (PAD_NAME LENGTH)

shape[layer] int (PAD_SHAPE ...)
signal string
X, ¥ int (center point, see note)

See also UL FOOTPRINT, UL CONTACT, UL SMD

Constants

PAD_FLAG_STOP
PAD FLAG_THERMALS
PAD FLAG_FIRST

generate stop mask
generate thermals
use special "first pad" shape

PAD_SHAPE_SQUARE square
PAD SHAPE_ ROUND round
PAD_SHAPE_OCTAGON octagon
PAD SHAPE LONG long
PAD SHAPE OFFSET offset

max. recommended length of a pad name (same

PAD NAME LENGTH
- - as CONTACT NAME_LENGTH)

Note

The parameters of the pad depend on the context in which it is accessed:

e if the pad is derived from a UL _ LIBRARY context, the coordinates
y) and angle will be the same as defined in the footprint drawing

e 1in all other cases, they will have the actual values from the board

(x,

The diameter and shape of the pad depend on the layer for which they shall
be retrieved, because they may be different in each layer depending on
the Design Rules. If one of the layers LAYER TOP...LAYER BOTTOM,

57

EAGLE User Language — Version 9.2.0

LAYER TSTOP or LAYER BSTOP is given as the index to the diameter or shape
data member, the resulting value will be calculated according to the Design
Rules. If LAYER PADS is given, the raw value as defined in the library will
be returned.

drillsymbol returns the number of the drill symbol that has been assigned
to this drill diameter (see the manual for a list of defined drill
symbols). A value of 0 means that no symbol has been assigned to this drill
diameter.

angle defines how many degrees the pad is rotated counterclockwise around
its center.

elongation is only valid for shapes PAD SHAPE LONG and PAD SHAPE OFFSET and
defines how many percent the long side of such a pad is longer than its
small side. This member returns 0 for any other pad shapes.

The value returned by flags must be masked with the PAD FLAG ... constants
to determine the individual flag settings, as in

if (pad.flags & PAD FLAG STOP) ({

}
Note that if your ULP just wants to draw the objects, you don't need to
check these flags explicitly. The diameter[] and shape[] members will
return the proper data; for instance, if PAD FLAG STOP is
set, diameter [LAYER TSTOP] will return 0, which should result in nothing
being drawn in that layer. The flags member is mainly for ULPs that want to
create script files that create library objects.

Example

library (L) {
L.footprints (FPT) {
FPT.contacts (C) {
if (C.pad)
printf ("Pad: '%s', (%f %f), d=%f\n",
C.name, u2mm(C.pad.x), u2mm(C.pad.y),
uzmm (C.pad.diameter [LAYER BOTTOM])) ;
}
}

UL PART

Data members

attribute[] string (see note)

device UL_DEVICE

deviceset UL_DEVICESET
module UL_MODULE (see note)

modulepart UL PART (see note)
modulepath string (see note)

name string (PART NAME LENGTH)
package3d UL_PACKAGE3D

populate int (0=do not populate, 1=populate)
value string (PART VALUE_LENGTH)

58

EAGLE User Language — Version 9.2.0

Loop members
attributes() UL_ATTRIBUTE (see note)
instances () UL_INSTANCE (see note)

variants() UL_VARIANT (see note)
See also UL SCHEMATIC, UL SHEET

Constants

max. recommended length of a part name (used in formatted output
only)
max. recommended length of a part value (used in formatted output
only)

PART NAME LENGTH

PART VALUE LENGTH

Note

The attribute[] member can be used to query a UL PART for the value of a
given attribute (see the second example below). The returned string is
empty if there is no attribute by the given name, or if this attribute is
explicitly empty.

When looping through the attributes() of a UL PART, only
the name, value, defaultvalue and constant members of the resulting
UL ATTRIBUTE objects are valid.

When looping through the assembly variants() of a UL _PART, only actual
variants are available. The default assembly variant is not available here.
Therefore this loop is not active on parts without assembly variants.

If the part is in a sheet context, the instances () loop member loops only
through those instances that are actually used on that sheet. If the part
is in a schematic or module context, all instances are looped through.

If the part is a virtual part (virtual parts can be retrieved
with UL SCHEMATIC.allparts(), see UL SCHEMATIC) the instances() loop is
empty.

If the part is from a module or is a virtual part, module refers to this.
If not (part in main schematic), module is null.

If the part is virtual, modulepart is the (real) part from the source
module module. If it's a part in main schematic or if it's a module part
itself modulepart is null.

If the part is virtual, modulepath is a string with the sequence of names
of the module instances that point to the module containing the part being
used. These names are separated by ':'. In other cases this string is
empty.

For example, a virtual part with name 'MI1:R1' has modulepath 'MI1'.
'R101"' coming from a module instance 'MX' with offset notation,

delivers modulepath 'MX'.

'MAIN:SUB1:SUBSUB1:C5' has modulepath 'MAIN:SUB1:SUBSUB1'.

Not all UL _PART's have 3D packages. The package3d member can be used as a
boolean to test whether or not a 3D package is present, e.g. if
(P.package3d) .

59

EAGLE User Language — Version 9.2.0

Examples

schematic (S) {
S.parts (P) printf ("Part: %s\n", P.name);
}
schematic (S) {
S.allparts (P) {
if (P.attribute["REMARK"])
printf ("$s: %s\n", P.name, P.attribute["REMARK"]) ;
if (P.modulepart) {
P.modulepart.instances (I)
printf ("$s is a virtual part from %s in module %s with part
instance on sheet %d\n",
P.name, P.modulepart.name, P.module.name, I.sheet):;
}
else {
P.instances (I)
printf ("%$s is a part on main schematic with instance on sheet
%d\n",
P.name, I.sheet);
}
}
}
schematic (S) {
S.allparts (P) {
if (P.modulepart) {
string miNames|[];
int nr = strsplit (miNames, P.modulepath, ':');
if (nr == 1)
printf ("%$s is a virtual part created by module instance %s in
main schematic.\n",
P.name, miNames[0]) ;
else {
printf ("%$s is a virtual part in a multiple hierarchy created by
this path of module instances:\n", P.name);
for (int i = 0; 1 < nr; ++1)
printf ("$s\n", miNames[i]) ;

UL PIN

Data members

angle real (0, 90, 180 and 270)
contact UL_CONTACT (deprecated, see note)
direction int(PIN DIRECTION ...)
function int(PIN_ FUNCTION FLAG ...)
length int (PIN LENGTH ...)

name string (PIN NAME LENGTH)

net string (see note)

route int (CONTACT ROUTE ...)
swaplevel int

visible int (PIN VISIBLE FLAG ...)
X, ¥ int (connection point)

Loop members

EAGLE User Language — Version 9.2.0

circles() UL_CIRCLE

contacts () UL _CONTACT (see note)
texts () UL_TEXT

wires () UL_WIRE

See also UL SYMBOL, UL PINREF, UL CONTACTREF

Constants

PIN DIRECTION NC ot connected
PIN_DIRECTION_IN input
PIN_DIRECTION_OUT output (totem-pole)

PIN DIRECTION IO in/output (bidirectional)
PIN_DIRECTION_OC open collector

PIN_DIRECTION_PWR power input pin
PIN_DIRECTION_PAS passive

PIN DIRECTION_HIZ high impedance output
PIN_DIRECTION_SUP supply pin
PIN_FUNCTION_FLAG_NONE no symbol

PIN FUNCTION FLAG DOT inverter symbol
PIN_FUNCTION_FLAG_CLK clock symbol
PIN LENGTH POINT no wire

PIN LENGTH SHORT 0.1 inch wire

PIN LENGTH MIDDLE ().2 inch wire

PIN LENGTH LONG 0.3 inch wire

max. recommended length of a pin name (used in formatted output

only)
PIN VISIBLE FLAG OFF no name drawn

PIN_VISIBLE_FLAG_PAD pad name drawn
PIN_VISIBLE_FLAG_PIN pin name drawn
CONTACT_ROUTE_ALL must explicitly route to all contacts
CONTACT_ROUTE_ANY may route to any contact

PIN NAME LENGTH

Note

The contacts () loop member loops through the contacts that have been
assigned to the pin through a CONNECT command. This is the case in a
UL DEVICE context or coming via UL PINREF, but not via

UL LIBRARY.symbols (). If this is not the case the list is empty.

The contact data member returns the contact that has been assigned to the
pin through a CONNECT command. This member is deprecated! It will work for
backwards compatibility and as long as only one pad has been connected to
the pin, but will cause a runtime error when used with a pin that is
connected to more than one pad.

The route member also only makes sense if there's a relation to contacts
the pin is connected to. Otherwise the value is set to 0.

The coordinates (and layer, in case of an SMD) of the contact returned by
the contact data member depend on the context in which it is called:

61

EAGLE User Language — Version 9.2.0

e if the pin is derived from a UL _PART that is used on a sheet, and if
there is a corresponding element on the board, the resulting contact
will have the coordinates as used on the board

e in all other cases, the coordinates of the contact will be the same
as defined in the footprint drawing

The name data member always returns the name of the pin as it was defined
in the library, with any '@' character for pins with the same name left
intact (see the PIN command for details).

The texts loop member, on the other hand, returns the pin name (if it is
visible) in the same way as it is displayed in the current drawing type.

The net data member returns the name of the net to which this pin is
connected to (only available in a UL _SCHEMATIC context).

Example

library (L) {
L.symbols (S) {
printf ("Symbol: %s\n", S.name);
S.pins (P) {
printf ("\tPin: %s, (%f %f)", P.name, u2mm(P.x), u2mm(P.y));

if (P.direction == PIN DIRECTION IN)
printf (" input");

if ((P.function & PIN FUNCTION FLAG DOT) 1= 0)
printf (" inverted");

printf ("\n") ;

}

UL PINREF

Data members
instance UL _INSTANCE
part UL_PART
pin UL_PIN

See also UL SEGMENT, UL CONTACTREF

Example

schematic (SCH) {
SCH.sheets (SH) {
printf ("Sheet: %d\n", SH.number) ;
SH.nets (N) {
printf ("\tNet: %s\n", N.name);
N.segments (SEG) {
SEG.pinrefs (P) {
printf ("connected to: %s, %s, %s\n",
P.part.name, P.instance.name, P.pin.name) ;

62

EAGLE User Language — Version 9.2.0

UL POLYGON

Data members
isolate int

layer int

orphans int (O=oft, 1=on)

pour int (POLYGON POUR ...)
rank int

spacing int
thermals int (0=off, 1=on)
width int
Loop members o
contours () UL _WIRE (see note)
fillings() UL _WIRE
wires () UL _WIRE
See also UL BOARD, UL FOOTPRINT, UL SHEET, UL SIGNAL, UL SYMBOL

Constants

POLYGON POUR SOLID solid
POLYGON POUR HATCH hatch
POLYGON POUR CUTOUT cutout

Note

The contours() and fillings() loop members loop through the wires that are
used to draw the calculated polygon if it is part of a signal and the
polygon has been calculated by the RATSNEST command. The wires () loop
member always loops through the polygon wires as they were drawn by the

user. For an uncalculated signal polygon contours () does the same
as wires (), and fillings () does nothing.
If the contours() loop member is called without a second parameter, it

loops through all of the contour wires, regardless whether they belong to a
positive or a negative polygon. If you are interested in getting the
positive and negative contour wires separately, you can

call contours() with an additional integer parameter (see the second
example below). The sign of that parameter determines whether a positive or
a negative polygon will be handled, and the value indicates the index of
that polygon. If there is no polygon with the given index, the statement
will not be executed. Another advantage of this method is that you don't
need to determine the beginning and end of a particular polygon yourself
(by comparing coordinates). For any given index, the statement will be
executed for all the wires of that polygon. With the second parameter 0 the
behavior is the same as without a second parameter.

Polygon width

When using the fillings() loop member to get the fill wires of a solid
polygon, make sure the width of the polygon is not zero (actually it should
be quite a bit larger than zero, for example at least the hardware
resolution of the output device you are going to draw on). Filling a
polygon with zero width may result in enormous amounts of data, since it
will be calculated with the smallest editor resolution of 1/320000mm!

63

EAGLE User Language — Version 9.2.0

Partial polygons

A calculated signal polygon may consist of several distinct parts

(called positive polygons), each of which can contain extrusions

(negative polygons) resulting from other objects being subtracted from the
polygon. Negative polygons can again contain other positive polygons and so
on.

The wires looped through by contours () always start with a positive
polygon. To find out where one partial polygon ends and the next one
begins, simply store the (x1,yl) coordinates of the first wire and check
them against (x2,y2) of every following wire. As soon as these are equal,
the last wire of a partial polygon has been found. It is also guaranteed
that the second point (x2,y2) of one wire is identical to the first point
(x1,yl) of the next wire in that partial polygon.

To find out where the "inside" and the "outside" of the polygon lays, take
any contour wire and imagine looking from its point (x1,yl) to (x2,y2). The
"inside" of the polygon is always on the right side of the wire. Note that
if you simply want to draw the polygon you won't need all these details.

Example

board (B) {
B.signals (S) {
S.polygons (P) {
int x0, y0, first = 1;
P.contours (W) {
if (first) {
// a new partial polygon is starting

X0 = W.x1;
y0 = W.yl;
}
//
// do something with the wire
//
if (first)
first = 0;
else if (W.x2 == x0 && W.y2 == y0) {

// this was the last wire of the partial polygon,
// so the next wire (if any) will be the first wire
// of the next partial polygon

first = 1;

}

}
}
board (B) {
B.signals (S) {
S.polygons (P) {
// handle only the "positive" polygons:
int 1 = 1;
int active;
do {
active = 0;
P.contours (W, i) {
active = 1;
// do something with the wire

}

64

EAGLE User Language — Version 9.2.0

i++;
} while (active);

UL PORT

Data members

border int (MODULE_BORDER .. .)
bus string (see note)
direction int (PIN DIRECTION ... (see note))
name string (PORT NAME LENGTH)
net string (see note)
X, ¥ int (connection point)
Loop members
nets () UL_NET (see note)

texts() UL _TEXT

wires() UL_WIRE
See also UL MODULE, UL MODULEINST, UL PORTREF

Constants

MODULE_BORDER_BOTTOM at bottom border of module
MODULE_BORDER RIGHT at right border of module

MODULE_BORDER_TOP at top border of module
MODULE_BORDER_LEFT at left border of module
DORT NAME LENGTH max. recommended length of a port name (used in formatted
- - output only)
Note
The direction values are identical to the PIN DIRECTION ... values (without

PIN DIRECTION_SUP).

The bus and the net data members return the name of the bus or net to which
this port is connected to (only available in a UL MODULEINST context).
Additionally the nets loop member loops through all available nets of this
connection.

Example

schematic (SCH) {
SCH.modules (M) {
M.ports (P) printf ("Port: %$s\n", P.name);
}

UL PORTREF

Data members

65

EAGLE User Language — Version 9.2.0

moduleinst UL MODULEINST

port UL_PORT
See also UL SEGMENT

Example

schematic (SCH) {
SCH.sheets (SH) {
printf ("Sheet: %d\n", SH.number) ;
SH.nets (N) {
printf ("\tNet: %s\n", N.name);
N.segments (SEG) {
SEG.portrefs (P) {
printf ("\tconnected to: %s, %s\n",
P.moduleinst.name, P.port.name);

UL RECTANGLE

Data members
angle real (0.0...359.9)
layer int
x1, yl1 int (lower left corner)

x2, y2 int (upper right corner)
See also UL BOARD, UL FOOTPRINT, UL SHEET, UL SYMBOL

The coordinates (x1 yl) and (x2 y2) are always referring to the initial
orientation of the rectangle regardless of the angle.

angle defines how many degrees the rectangle is rotated counterclockwise
around its center. The center coordinates are given
by (x1+x2)/2 and (yl+y2)/2.

Example
board (B) {
B.rectangles (R) {
printf ("Rectangle: (%f %f), (%f %f)\n",

uZ2mm (R.x1), u2mm(R.yl), u2mm(R.x2), uZ2mm(R.y2));
}

UL SCHEMATIC

Data members

alwaysvectorfont int (ALWAYS VECTOR FONT ..., see note)
checked int (see note)

description string

grid UL_GRID

66

EAGLE User Language — Version 9.2.0

headline string
name string (see note)
verticaltext int (VERTICAL TEXT ...)
xreflabel string
xrefpart string

Loop members
allnets () UL_NET (see note)
allparts() UL_PART (see note)
attributes () UL_ATTRIBUTE (see note)
classes() UL_CLASS
errors () UL_ERROR
layers () UL _LAYER
libraries() UL_LIBRARY
modules () UL_MODULE
nets () UL _NET
parts () UL_PART
sheets () UL_SHEET

variantdefs () UL VARIANTDEF
See also UL BOARD, UL LIBRARY, variant()

Constants

ALWAYS_VECTOR_FONT_GUI alwaysvectorfont is set in the user interface dialog
ALWAYS_VECTOR_FONT_PERSISTENT alwaysvectorfont is set persistent in this schematic
VERTICAL_TEXT_ UP reading direction for vertical texts: up

VERTICAL TEXT DOWN reading direction for vertical texts: down

Note

The value returned by alwaysvectorfont can be used in boolean context or
can be masked with the ALWAYS VECTOR FONT ... constants to determine the
source of this setting, as in
if (sch.alwaysvectorfont) ({

// alwaysvectorfont is set in general

}
if (sch.alwaysvectorfont & ALWAYS VECTOR FONT GUI) {

// alwaysvectorfont is set in the user interface

}
The value returned by checked can be used in boolean context and is set
only after a recent 'Electrical Rule Check' (ERC).

The name member returns the full file name, including the directory.

The xreflabel and xrefpart members return the format strings used to
display cross-reference labels and part cross-references.

The attributes () loop member loops through the global attributes.

Virtual nets, allnets() loop

The allnets () loop member loops through the nets () of the schematic itself
and through all the virtual nets, generated by module instances.

67

EAGLE User Language — Version 9.2.0

Virtual parts, allparts() loop

Hierarchical parts are generated by module instances and actually do not
exist in the schematic, only corresponding parts in the modules. For this
we sometimes call them 'Virtual parts'. One module part can be used by
several virtual parts via several module instances. As each virtual part
corresponds to a (real existing) element in the board, the User Language
supplies those parts as well, e.g. for BOM generation.

The allparts() loop member loops through the parts() of the schematic
itself and through all the virtual parts.

Example

schematic (S) {
S.parts (P) printf ("Part: %$s\n", P.name);
}

UL SEGMENT

Loop members

junctions () UL_JUNCTION (see note)

labels () UL_LABEL

pinrefs() UL_PINREF (see note)
portrefs () UL_PORTREF

texts () UL _TEXT (deprecated, see note)
wires () UL_WIRE

See also UL BUS, UL NET

Note

The Jjunctions () and pinrefs() loop members are only available for net
segments.
The texts () loop member was used in older EAGLE versions to loop through

the labels of a segment, and is only present for compatibility. It will not
deliver the text of cross-reference labels at the correct position. Use
the labels () loop member to access a segment's labels.

Example

schematic (SCH) {
SCH.sheets (SH) {
printf ("Sheet: %d\n", SH.number) ;
SH.nets (N) {
printf ("\tNet: %s\n", N.name);
N.segments (SEG) {
SEG.pinrefs (P) {
printf ("connected to: %s, %s, %s\n",
P.part.name, P.instance.name, P.pin.name) ;

68

EAGLE User Language — Version 9.2.0

UL SHEET

Data members

area UL_AREA
description string
headline string
number int

Loop members o
busses () UL_BUS
circles () UL _CIRCLE
dimensions () UL_DIMENSION
frames () UL_FRAME
instances () UL _INSTANCE
moduleinsts () UL MODULEINST
nets () UL _NET
polygons () UL _POLYGON
rectangles () UL _RECTANGLE
texts () UL_TEXT
wires () UL _WIRE

See also UL SCHEMATIC

Example

schematic (SCH) {
SCH.sheets (S) {
printf ("Sheet: %d\n", S.number);
}
}

UL SIGNAL

Data members
airwireshidden int

class UL_CLASS
name string (SIGNAL NAME LENGTH)

Loop members

contactrefs() UL_CONTACTREF

polygons () UL _POLYGON
vias () UL_VIA
wires () UL _WIRE

See also UL BOARD

Constants

max. recommended length of a signal name (used in formatted

SIGNAL NAME LENGTH
- - output only)

Example

board (B) {

EAGLE User Language — Version 9.2.0

B.signals (S) printf ("Signal: %s\n", S.name);

}

UL SMD

Data members

angle real (0.0...359.9)
dx[layer], dyllayer] int (size)

flags int (SMD FLAG ...)
layer int (see note)

name string (SMD NAME LENGTH)
roundness int (see note)

signal string

X, ¥ int (center point, see note)

See also UL FOOTPRINT, UL CONTACT, UL PAD

Constants

SMD_FLAG_STOP generate stop mask
SMD_FLAG_THERMALS generate thermals
SMD_FLAG_CREAM generate cream mask

max. recommended length of an smd name (same

SMD_NAME_LENGTH
- - as CONTACT NAME_LENGTH)

Note

The parameters of the smd depend on the context in which it is accessed:

e if the smd is derived from a UL_LIBRARY context, the coordinates (x,
y), angle, layer and roundness of the smd will be the same as defined
in the footprint drawing

e 1in all other cases, they will have the actual values from the board

If the dx and dy data members are called with an optional layer index, the
data for that layer is returned according to the Design Rules.

Valid layers are LAYER TOP, LAYER TSTOP and LAYER TCREAM for an smd in the
Top layer, and LAYER BOTTOM, LAYER BSTOP and LAYER BCREAM for an smd in the
Bottom layer, respectively.

angle defines how many degrees the smd is rotated counterclockwise around
its center.

The value returned by flags must be masked with the SMD FLAG ... constants
to determine the individual flag settings, as in

if (smd.flags & SMD FLAG STOP) ({

}
Note that if your ULP just wants to draw the objects, you don't need to
check these flags explicitly. The dx[] and dy[] members will return the
proper data; for instance, if SMD FLAG STOP is set, dx[LAYER TSTOP] will
return 0, which should result in nothing being drawn in that layer.
The flags member is mainly for ULPs that want to create script files that
create library objects.

70

EAGLE User Language — Version 9.2.0

Example

library (L) {
L.footprints (FPT) {
FPT.contacts (C) {
if (C.smd)
printf ("Smd: '%$s', (%f %f), dx=%f, dy=%f\n",
C.name, u2mm(C.smd.x), uZ2mm(C.smd.y), u2mm(C.smd.dx),
u2mm (C.smd.dy)) ;
}
}

UL SYMBOL

Data members

area UL_AREA

description strin

headline strin

library string

libraryurn string (see note)

libraryversion int (see note)

locallymodified int (see note)

librarylocallymodified int (see note)

name string (SYMBOL_NAME LENGTH)

urn string (see note)
Loop members

circles() UL_CIRCLE

dimensions () UL _DIMENSION

frames () UL_FRAME

rectangles() UL RECTANGLE

pins () UL_PIN

polygons () UL _POLYGON

texts () UL_TEXT (see note)

wires () UL _WIRE

See also UL GATE, UL LIBRARY

Constants

max. recommended length of a symbol name (used in formatted

SYMBOL_NAME LENGTH
- - output only)

Note

If the UL SYMBOL is derived from a UL _INSTANCE, the texts() member only
loops through the non-detached texts of that instance.

The urn contains a unique identifier for this symbol, of the

form urn:adsk.eagle:symbol:123/4, where the portion after the / is the
version of the symbol. To get the base URN (without version),

use urnbase(); to get the version, use urnversion().

71

EAGLE User Language — Version 9.2.0

The libraryurn and libraryversion are only applicable if this UL SYMBOL
comes from a managed library. If not, libraryurn will be the empty string
and libraryversion will be -1.

The locallymodified member will be 0, if this UL SYMBOL doesn't have local
modifications, or 1, if this UL _SYMBOL has local modifications.

The librarylocallymodified member will be 0 (if this UL SYMBOL doesn't come
from a locally-modified library) or 1 (if this UL SYMBOL comes from a
locally-modified library).

Example

library (L) {
L.symbols (S) printf ("Sym: %s\n", S.name);
}

UL TEXT

Data members

align int (ALIGN ...)
angle real (0.0...359.9)
font int (FONT ...)
layer int
linedistance int

mirror int

ratio int

size int

spin int

value string

X, ¥ int (origin point)

Loop members

wires () UL_WIRE (see note)
See also UL BOARD, UL FOOTPRINT, UL SHEET, UL SYMBOL

Constants

FONT VECTOR vector font
FONT_PROPORTIONAL proportional font
FONT FIXED fixed font
ALIGN_BOTTOM LEFT bottom/left aligned

ALIGN_BOTTOM_CENTER bottom/center aligned
ALIGN BOTTOM RIGHT bottom/right aligned

ALIGN_CENTER_LEFT center/left aligned
ALIGN CENTER centered
ALIGN_CENTER RIGHT center/right aligned
ALIGN_TOP_LEFT top/left aligned
ALIGN_TOP_CENTER top/center aligned
ALIGN TOP RIGHT top/right aligned
Note

72

EAGLE User Language — Version 9.2.0

The wires () loop member always accesses the individual wires the text is
composed of when using the vector font, even if the actual font is
not FONT VECTOR.

If the UL TEXT is derived from a UL ELEMENT or UL INSTANCE context, the
member values will be those of the actual text as located in the board or
sheet drawing.

Example

board (B) {
B.texts (T) {
printf ("Text: %$s\n", T.value);

}

UL VARIANTDEF

Data members

name string
See also UL VARIANT, UL SCHEMATIC, UL BOARD, variant ()

Example

schematic (SCH) {
printf ("Defined assembly variants:\n");
SCH.variantdefs (VD) {
printf ("\t'%s'\n", VD.name) ;
}
printf ("\n") ;
printf ("Part\tVariantdef\tValue\tTechn.\tPopulated\n") ;
SCH.parts (P) {
printf ("$s\t%s\t%s\t%s\t%s\n", P.name, "default", P.value,
P.device.activetechnology, "yes");
P.variants (V) {

printf ("$s\t%s\t%s\t%s\t%s\n", P.name, V.variantdef.name, V.value,
V.technology, V.populate ? "yes" : "no");

}
}

UL VARIANT

Data members

populate int (O=do not populate, 1=populate)
value string

technology sning

variantdef UL _VARIANTDEF
See also UL VARIANTDEF, UL PART, variant ()

Example

schematic (SCH) {
printf ("Defined assembly variants:\n");

73

EAGLE User Language — Version 9.2.0

SCH.variantdefs (VD) {
printf ("\t'%s'\n", VD.name) ;
}
printf ("\n") ;
printf ("Part\tVariantdef\tValue\tTechn.\tPopulated\n") ;
SCH.parts (P) {
printf ("$s\t%s\t%s\t%s\t%s\n", P.name, "default", P.value,
P.device.activetechnology, "yes");
P.variants (V) {

printf ("$s\t%s\t%s\t%s\t%s\n", P.name, V.variantdef.name, V.value,
V.technology, V.populate ? "yes" : "no");

}
}

UL VIA

Data members

diameter([layer] int

drill int

drillsymbol int

end ﬂﬁ

flags int (VIA FLAG ...)
shape [layer] int (VIA SHAPE ...)
start int

X, y int (center point)

See also UL SIGNAL

Constants

VIA_FLAG_STOP always generate stop mask
VIA_SHAPE_SQUARE square

VIA SHAPE ROUND round

VIA SHAPE_OCTAGON octagon

Note

The diameter and shape of the via depend on the layer for which they shall
be retrieved, because they may be different in each layer depending on

the Design Rules. If one of the layers LAYER TOP...LAYER BOTTOM,

LAYER TSTOP or LAYER BSTOP is given as the index to the diameter or shape
data member, the resulting value will be calculated according to the Design
Rules. If LAYER VIAS is given, the raw value as defined in the via will be
returned.

Note that diameter and shape will always return the diameter or shape that
a via would have in the given layer, even if that particular via doesn't
cover that layer (or if that layer isn't used in the layer setup at all).

start and end return the layer numbers in which that via starts and ends.
The value of start will always be less than that of end.

drillsymbol returns the number of the drill symbol that has been assigned
to this drill diameter (see the manual for a list of defined drill

74

EAGLE User Language — Version 9.2.0

symbols). A value of 0 means that no symbol has been assigned to this drill

diameter.

Example

board (B) {
B.signals (S) {
S.vias (V) {
printf ("Via: (%f %f)\n", u2mm(V.x), u2mm(V.y));
}

UL WIRE

Data members

arc UL_ARC

cap int (Cap_...)

curve real

layer int

style int (WIRE STYLE ...)

width nt

x1l, yl int (starting point)

x2, y2 int (end point)
Loop members

pieces () UL_WIRE (see note)

See

also UL BOARD, UL FOOTPRINT, UL SEGMENT, UL SHEET, UL SIGNAL, UL SYMBOL, UL
_ARC

Constants

CAP FLAT flat arc ends

CAP_ROUND round arc ends

WIRE_STYLE CONTINUOUS continuous

WIRE STYLE LONGDASH long dash

WIRE STYLE SHORTDASH short dash

WIRE_STYLE DASHDOT dash dot

Wire Style

A UL WIRE that has a style other than WIRE STYLE CONTINUOUS can
the pieces () loop member to access the individual segments that
for example a dashed wire. If pieces() is called for a UL WIRE
with WIRE STYLE CONTINUOUS, a single segment will be accessible
just the same as the original UL WIRE. The pieces() loop member
called from a UL WIRE that itself has been returned by a call
to pieces () (this would cause an infinite recursion).

Arcs at Wire level

use
constitute

which is
can't be

75

EAGLE User Language — Version 9.2.0

Arcs are basically wires, with a few additional properties. At the first
level arcs are treated exactly the same as wires, meaning they have a start
and an end point, a width, layer and wire style. In addition to these an
arc, at the wire level, has a cap and a curve parameter. cap defines
whether the arc endings are round or flat, and curve defines the
"curvature" of the arc. The valid range for curve is -360..+360, and its
value means what part of a full circle the arc consists of. A value of 90,
for instance, would result in a 90° arc, while 180 would give you a
semicircle. The maximum value of 360 can only be reached theoretically,
since this would mean that the arc consists of a full circle, which,
because the start and end points have to lie on the circle, would have to
have an infinitely large diameter. Positive values for curve mean that the
arc is drawn in a mathematically positive sense (i.e. counterclockwise).
If curve is 0, the arc is a straight line ("no curvature"), which is
actually a wire.

The cap parameter only has a meaning for actual arcs, and will always
return CAP _ROUND for a straight wire.

Whether or not an UL WIRE is an arc can be determined by checking the
boolean return value of the arc data member. If it returns 0, we have a
straight wire, otherwise an arc. If arc returns a non-zero value it may be
further dereferenced to access the UL ARC specific parameters start and end
angle, radius and center point. Note that you may only need these
additional parameters if you are going to draw the arc or process it in
other ways where the actual shape is important.

Example
board (B) {
B.wires (W) {
printf ("Wire: (%f %$f) (%f %f)\n",
u2mm (W.x1), u2mm(W.yl), u2mm(W.x2), u2mm(W.y2));

}

Definitions

The data items to be used in a User Language Program must be defined before
they can be used.

There are three kinds of definitions:

e Constant Definitions

e Variable Definitions

e TFunction Definitions

The scope of a constant or variable definition goes from the line in which
it has been defined to the end of the current block, or to the end of the
User Language Program, if the definition appeared outside any block.

The scope of a function definition goes from the closing brace (}) of the
function body to the end of the User Language Program.

Constant Definitions

76

EAGLE User Language — Version 9.2.0

Constants are defined using the keyword enum, as in

enum { a, b, c };

which would define the three constants a, b and ¢, giving them the
values 0, 1 and 2, respectively.

Constants may also be initialized to specific values, like

enum { a, b =5, c };
where a would be 0, b would be 5 and c¢ would be 6.

Variable Definitions

The general syntax of a variable definition is

[numeric] type identifier [= initializer][, ...];

where type is one of the data or object types, identifier is the name of
the variable, and initializer is a optional initial wvalue.

Multiple variable definitions of the same type are separated by commas (,).

If identifier is followed by a pair of brackets ([]), this defines an array
of variables of the given type. The size of an array i1s automatically
adjusted at runtime.

The optional keyword numeric can be used with string arrays to have them
sorted alphanumerically by the sort() function.

By default (if no initializer is present), data variables are set

to 0 (or "", in case of a string), and object variables are "invalid".
Examples
int i; defines an int variable named i
string s = "Hello"; defines a string variable named s and initializes it to "Hel1lo"
defines three real variables named a, b and c, initializing b to the
real a, b = 1.0, c;
value 1.0
int n[] = { 1, 2, 3 defines an array of int, initializing the first three elements
bi to 1,2 and 3

numeric string
names|[];

UL_WIRE w; defines a UL_WIRE object named w
The members of array elements of object types can't be accessed directly:
UL SIGNAL signals[];

defines a string array that can be sorted alphanumerically

UL SIGNAL s = signals[O0];
printf ("%$s", s.name);

Function Definitions

You can write your own User Language functions and call them just like
the Builtin Functions.

The general syntax of a function definition is

type identifier (parameters)

77

EAGLE User Language — Version 9.2.0

{

statements
}
where type is one of the data or object types, identifier is the name of
the function, parameters is a list of comma separated parameter
definitions, and statements is a sequence of statements.

Functions that do not return a value have the type void.

A function must be defined before it can be called, and function calls can
not be recursive (a function cannot call itself).

The statements in the function body may modify the values of the
parameters, but this will not have any effect on the arguments of
the function call.

Execution of a function can be terminated by the return statement. Without
any return statement the function body is executed until it's closing brace

(h).

A call to the exit () function will terminate the entire User Language
Program.

The special function maing

If your User Language Program contains a function called main(), that
function will be explicitly called as the main function, and it's return
value will be the return value of the program.

Command line arguments are available to the program through the
global Builtin Variables argc and argv.

Example

int CountDots (string s)
{
int dots = 0;
for (int i = 0; s[i]; ++1)
if (s[i] == "'.")
++dots;
return dots;
}
string dotted = "This.has.dots...";
output ("test") {
printf ("Number of dots: %d\n",
CountDots (dotted)) ;
}

Operators

The following table lists all of the User Language operators, in order of
their precedence (Unary having the highest precedence, Comma the lowest) :

Unary R it e
Multiplicative * / %
Additive + -

Shift << >>

78

EAGLE User Language — Version 9.2.0

Relational <<= > >=
Equality = !=
Bitwise AND
Bitwise XOR
Bitwise OR
Logical AND
Logical OR
Conditional
Assignment
Comma

H|ﬂ r—|%l—-|>|%
e |— |

*
Il
~
Il
o\°
Il
+
Il
|
Il
[°g]
Il
>
Il

|= <<= >>=

|~

Associativity is left to right for all operators, except

for Unary, Conditional and Assignment, which are right to left associative.

The normal operator precedence can be altered by the use of parentheses.

Bitwise Operators

Bitwise operators work only with data types char and int.

Unary
~ Bitwise (1's) complement
Binary
<< Shift left
>> Shift right

Bitwise AND
” Bitwise XOR
| Bitwise OR
Assignment
&= Assign bitwise AND
n= Assign bitwise XOR

= Assign bitwise OR

<<= Assign left shift
>>= Assign right shift

Logical Operators

Logical operators work with expressions of any data type.

Unary

! Logical NOT
Binary

&& Logical AND
Il Logical OR

Using a string expression with a logical operator checks whether the string

is empty.

Using an Object Type with a logical operator checks whether that object

contains valid data.

Comparison Operators

EAGLE User Language — Version 9.2.0

Comparison operators work with expressions of any data type, except Object
Types.

< Less than

<= Less than or equal to

> Greater than

>= @reater than or equal to

== Equal to

'= Not equal to

Evaluation Operators

Evaluation operators are used to evaluate expressions based on a condition,
or to group a sequence of expressions and have them evaluated as one
expression.

?: Conditional
, Comma

The Conditional operator is used to make a decision within an expression,
as in

int a;
// ...code that calculates 'a'
string s = a ? "True" : "False";
which is basically the same as
int a;
string s;
// ...code that calculates 'a'
if (a)

s = "True";
else

s = "False";

but the advantage of the conditional operator is that it can be used in an
expression.

The Comma operator is used to evaluate a sequence of expressions from left
to right, using the type and value of the right operand as the result.

Note that arguments in a function call as well as multiple variable
declarations also use commas as delimiters, but in that case this is not a
comma operator!

Arithmetic Operators

Arithmetic operators work with data types char, int and real (except
for ++, --, % and %=).

Unary

+ Unary plus

- Unary minus

+ Pre- or postincrement
-- Pre- or postdecrement
Binary

* Multiply

/ Divide

oo

Remainder (modulus)

80

EAGLE User Language — Version 9.2.0

+ Binary plus

- Binary minus

Assignment

= Simple assignment

*= Assign product

/= Assign quotient

%= Assign remainder (modulus)
+= Assign sum

—= Assign difference

See also String Operators

String Operators

String operators work with data types char, int and string. The left
operand must always be of type string.

Binary

+ Concatenation
Assignment

= Simple assignment
+= Append to string

The + operator concatenates two strings, or adds a character to the end of
a string and returns the resulting string.

The += operator appends a string or a character to the end of a given
string.

See also Arithmetic Operators

Expressions

An expression can be one of the following:

e Arithmetic Expression

e Assignment Expression

e String Expression

e Comma Expression

e Conditional Expression

e Function Call

Expressions can be grouped using parentheses, and may be recursive, meaning
that an expression can consist of subexpressions.

Arithmetic Expression

An arithmetic expression is any combination of numeric operands and
an arithmetic operator or a bitwise operator.

Examples

81

EAGLE User Language — Version 9.2.0

a + b
c++
m << 1

Assignment Expression

An assignment expression consists of a variable on the left side of
an assignment operator, and an expression on the right side.

Examples

String Expression

A string expression is any combination of string and char operands and
a string operator.

Examples
s + ".brd"
t + 'x!'

Comma Expression

A comma expression is a sequence of expressions, delimited by the comma
operator

Comma expressions are evaluated left to right, and the result of a comma
expression is the type and value of the rightmost expression.

Example

i++, j++, k++

Conditional Expression

A conditional expression uses the conditional operator to make a decision
within an expression.

Example

int a;

// ...code that calculates 'a'
string s = a ? "True" : "False";

82

EAGLE User Language — Version 9.2.0

Function Call

A function call transfers the program flow to a user defined function or
a builtin function. The formal parameters defined in the function
definition are replaced with the values of the expressions used as the
actual arguments of the function call.

Example

int p = strchr(s, 'b');

Statements

A statement can be one of the following:

e Compound Statement
e Control Statement

e Expression Statement
e Builtin Statement

e Constant Definition
e Variable Definition

Statements specify the flow of control as a User Language Program executes.
In absence of specific control statements, statements are executed
sequentially in the order of appearance in the ULP file.

Compound Statement

A compound statement (also known as block) is a list (possibly empty) of
statements enclosed in matching braces ({}). Syntactically, a block can be
considered to be a single statement, but it also controls the scoping of
identifiers. An identifier declared within a block has a scope starting at
the point of declaration and ending at the closing brace.

Compound statements can be nested to any depth.

Expression Statement

An expression statement is any expression followed by a semicolon.

An expression statement is executed by evaluating the expression. All side
effects of this evaluation are completed before the next statement is
executed. Most expression statements are assignments or function calls.

A special case 1s the empty statement, consisting of only a semicolon. An
empty statement does nothing, but it may be useful in situations where the
ULP syntax expects a statement but your program does not need one.

Control Statements

83

EAGLE User Language — Version 9.2.0

Control statements are used to control the program flow.
Iteration statements are

do...while

for

while

Selection statements are
if...else

switch

Jump statements are
break

continue

return

break

The break statement has the general syntax

break;

and immediately terminates

the nearest enclosing do...while, for, switch or while statement. This also
applies to loop members of object types.

Since all of these statements can be intermixed and nested to any depth,
take care to ensure that your break exits from the correct statement.

continue

The continue statement has the general syntax

continue;

and immediately transfers control to the test condition of

the nearest enclosing do...while, while, or for statement, or to the
increment expression of the nearest enclosing for statement.

Since all of these statements can be intermixed and nested to any depth,
take care to ensure that your continue affects the correct statement.

do...while

The do...while statement has the general syntax
do statement while (condition);
and executes the statement until the condition expression becomes zero.

The condition is tested after the first execution of statement, which means
that the statement is always executed at least one time.

If there is no break or return inside the statement, the statement must
affect the value of the condition, or condition itself must change during
evaluation in order to avoid an endless loop.

Example
string s = "Trust no one!";
int i = -1;

84

EAGLE User Language — Version 9.2.0

do {
++1;
} while (s[i]);

for

The for statement has the general syntax
for ([init]; [test]; [inc]) statement
and performs the following steps:

1. If an initializing expression init is present, it is executed.
If a test expression is present, it is executed. If the result is
nonzero (or i1f there is no test expression at all), the statement is
executed.

3. If an inc expression is present, it is executed.

4. Finally control returns to step 2.

If there is no break or return inside the statement, the inc expression (or
the statement) must affect the value of the test expression, or test itself
must change during evaluation in order to avoid an endless loop.

The initializing expression init normally initializes one or more loop
counters. It may also define a new variable as a loop counter. The scope of
such a variable is valid until the end of the block which encloses the for
loop.

Example

string s = "Trust no one!";
int sum = 0
for (int i

sum += s

H ~e

s[i]; ++1)

0;
il; // sums up the characters in s

i1f...else

The if...else statement has the general syntax
if (expression)
t statement
[else
f statement]
The conditional expression is evaluated, and if its value is nonzero
the t statement is executed. Otherwise the f statement is executed in case
there is an else clause.

An else clause 1s always matched to the last encountered if without
an else. If this is not what you want, you need to use braces to group the
statements, as in

if (a == 1) {
if (b == 1)
printf("a == 1 and b == 1\n");
}
else
printf ("a != 1\n");

85

EAGLE User Language — Version 9.2.0

return

A function with a return type other than void must contain at least

one return statement with the syntax

return expression;

where expression must evaluate to a type that is compatible with the
function's return type. The value of expression is the value returned by
the function.

If the function is of type void, a return statement without
an expression can be used to return from the function call.

switch

The switch statement has the general syntax
switch (sw_exp) {
case case exp: case statement

[default: def statement]

}
and allows for the transfer of control to one of several case-labeled
statements, depending on the value of sw_exp (which must be of integral

type) .

Any case statement can be labeled by one or more case labels.
The case exp of each case label must evaluate to a constant integer which
is unique within it's enclosing switch statement.

There can also be at most one default label.

After evaluating sw_exp, the case exp are checked for a match. If a match
is found, control passes to the case statement with the
matching case label.

If no match is found and there is a default label, control passes
to def statement. Otherwise none of the statements in the switch is
executed.

Program execution is not affected when case and default labels are
encountered. Control simply passes through the labels to the following
statement.

To stop execution at the end of a group of statements for a
particular case, use the break statement.

Example
string s = "Hello World";
int vowels = 0, others = 0;
for (int i = 0; s[i]; ++1)
switch (toupper(s[il])) {
case 'A':
case 'E':
case 'I':
case 'O':

case 'U': ++vowels;

86

EAGLE User Language — Version 9.2.0

break;
default: ++others;

}

printf ("There are %d vowels in '%s'\n", vowels, s);

while

The while statement has the general syntax
while (condition) statement
and executes the statement as long as the condition expression is not zero.

The condition is tested before the first possible execution of statement,
which means that the statement may never be executed if condition is
initially zero.

If there is no break or return inside the statement, the statement must
affect the value of the condition, or condition itself must change during
evaluation in order to avoid an endless loop.

Example
string s = "Trust no one!";
int 1 = 0;
while (s[i])
++1;

Builtins

Builtins are Constants, Variables, Functions and Statements that provide
additional information and allow for data manipulations.

e Builtin Constants
e Builtin Variables
e Builtin Functions
e Builtin Statements

Builtin Constants

Builtin constants are used to provide information about object parameters,
such as maximum recommended name length, flags etc.

Many of the object types have their own Constants section which lists the
builtin constants for that particular object (see e.g. UL PIN).

The following builtin constants are defined in addition to the ones listed
for the various object types:

EAGLE_VERSION EAGLE program version number (int)

EAGLE_RELEASE EAGLE program release number (int)

EAGLE STGNATURE g string cpntammg EAGLE program name, version and copyright
- information

EAGLE_PATH a string containing the complete path of the EAGLE executable

87

EAGLE User Language — Version 9.2.0

EAGLE DIR
EAGLE HOME
eagle epf

OS_SIGNATURE

REAL EPSILON
REAL MAX
REAL MIN

INT MAX
INT MIN
PI
usage

a string containing the directory of the EAGLE installation (SEAGLEDIR)
a string containing the user's home directory when starting EAGLE
($HOME)

a string containing the complete path of the currently used eagle.epf

a string containing a signature of the operating system (e.g. Mac...,
Windows... or Linux)

the minimum positive real number such that 1.0 + REAL EPSILON !=
1.0

the largest possible real value

the smallest possible (positive!) real value

the smallest representable number is ~-REAL MAX

the largest possible int value

the smallest possible int value

the value of "pi" (3.14..., real)

a string containing the text from the #usage directive

These builtin constants contain the directory paths defined in

the directories dialog,

with any of the special variables

($SHOME and $EAGLEDIR)
consist of several directories,
individual directory in each member.

of the path:

path lbr
path dru
path ulp
path scr
path cam

[]
[]
[]
[]
[]
[]

path epf

When using these constants to build a full file name,
directory separator,

string s

path 1br[0]

replaced by their actual values. Since each path can
these constants are string arrays with an
The first empty member marks the end

Libraries

Design Rules

User Language Programs
Scripts

CAM Jobs

Projects

you need to use a
as in
+

/' + "mylib.lbr";

The libraries that are currently in use through the USE command:

used libraries|[]

Builtin Variables

Builtin variables are used to provide information at runtime.

int argc

string
argv([]

number of arguments given to the RUN command
arguments given to the RUN command (argv (0] is the full ULP file
name)

Builtin Functions

Builtin functions are used to perform specific tasks,
formatted strings,

like printing
sorting data arrays or the like.

88

EAGLE User Language — Version 9.2.0

You may also write your own functions and use them to structure your User
Language Program.

The builtin functions are grouped into the following categories:

e Character Functions

e File Handling Functions
e Mathematical Functions

e Miscellaneous Functions

e Network Functions
e Printing Functions
e String Functions

e Time Functions

e Object Functions
e XML Functions

Alphabetical reference of all builtin functions:

e abs ()

e acos()

° a51n()

e atan()

° cell()

e cfgget ()
e cfgset|()

e clrgroup()
e country()

e cos|()
e exit()
e exp()

e fdlsignature ()
e filedir()
e fileerror|()
o fileext()
e fileglob(
e filename (
(

)

)

e fileread()
e filesetext()

)

)

o filesize(
o filetime(
e floor()

e frac()

e inch2u()

e ingroup ()
e isalnum()
e isalphal()
e iscntrl()
e isdigit()
e isgraph()
e islower ()
e isprint()
e ispunct ()
e isspace()
e isupper()

EAGLE User Language — Version 9.2.0

isxdigit ()
language ()
log ()
1ogl10 ()
lookup ()
max ()
mic2u ()
mil2u ()
min ()
mm2u ()
neterror ()
netget ()
netpost ()
palette ()
pow ()
printf ()
round ()
setgroup ()
setvariant ()
sin ()
sleep ()
sort ()
sprintf ()
sqrt ()
status ()
strchr ()
strjoin ()
strlen ()
strlwr ()
strrchr ()
strrstr ()
strsplit ()
strstr ()

strsub ()
strtod ()
strtol ()
strupr ()
strxstr ()
system ()
t2day ()
t2dayofweek ()
t2hour ()
t2minute ()
t2month ()
t2second ()
t2string ()
t2year ()
tan ()

time ()
tolower ()
toupper ()
trunc ()
u2inch ()
u2mic ()

90

EAGLE User Language — Version 9.2.0

e uZ2mil ()

e u2mm()

e variant ()

e xmlattribute ()
e xmlattributes/()
e xmlelement ()

e xmlelements /()

e xmltags ()

e xmltext ()

Character Functions

Character functions are used to manipulate single characters.

The following character functions are available:

e isalnum()
e isalphal()
e iscntrl()
e isdigit()
e isgraph()
e islower ()
e isprint()
e ispunct ()
e isspace()
e isupper/()
e isxdigit()
e tolower (

(

)
)

e toupper

is... ()

Function
Check whether a character falls into a given category.
Syntax
int isalnum
int isalpha
int iscntrl
int isdigit
int isgraph
int islower
int isprint
int ispunct
int isspace (char
int isupper (char
int isxdigit (char
Returns
The is... functions return nonzero if the given character falls into
the category, zero otherwise.

char
char
char
char
char
char
char
char

Ne Ne Ne N

o N

~e N

~.

Q000000000

N~ — — — — — — — — —
~

~ ~.
~.

Character categories

isalnum letters (2 to z or a to z) or digits (0 to 9)

91

EAGLE User Language — Version 9.2.0

isalpha letters (A to z or a to z)

iscntrl delete characters or ordinary control characters (0x7F or 0x00 to 0x1F)
isdigit digits (0 to 9)

isgraph printing characters (except space)

islower lowercase letters (a to z)

isprint printing characters (0x20 to 0x7E)

ispunct punctuation characters (iscntrl or isspace)

space, tab, carriage return, new line, vertical tab, or formfeed
(0x09 to 0x0D, 0x20)

isupper uppercase letters (a to z)

isxdigit hex digits (0to 9, At0 F, a to f)

isspace

Example

char ¢ = 'A';
if (isxdigit(c))

printf ("$c is hex\n", c);
else

printf ("$c is not hex\n", c);

to... ()

Function
Convert a character to upper- or lowercase.
Syntax
char tolower (char c);
char toupper (char c);
Returns
The tolower function returns the converted character if c is
uppercase. All other characters are returned unchanged.
The toupper function returns the converted character if c is
lowercase. All other characters are returned unchanged.
See also strupr, strlwr

File Handling Functions

Filename handling functions are used to work with file names, sizes and
timestamps.

The following file handling functions are available:

e fileerror|()
e fileglob()

e filedir()

o fileext()

e filename()

e fileread()

e filesetext()
e filesize()

e filetime()

See output () for information about how to write into a file.

92

EAGLE User Language — Version 9.2.0

fileerror ()

Function
Returns the status of I/O operations.
Syntax
int fileerror();
Returns
The fileerror function returns 0 if everything is ok.
See also output, printf, fileread

fileerror checks the status of any I/O operations that have been performed
since the last call to this function and returns 0 if everything was ok. If
any of the I/0O operations has caused an error, a value other than 0 will be
returned.

You should call fileerror before any I/O operations to reset any previous
error state, and call it again after the I/0O operations to see if they were
successful.

When fileerror returns a value other than 0 (thus indicating an error) a
proper error message has already been given to the user.

Example

fileerror () ;

output ("file.txt", "wt") {
printf ("Test\n") ;
}

if (fileerror())

exit (1) ;
fileglob()
Function
Perform a directory search.
Syntax
int fileglob(string &array([], string pattern);
Returns

The fileglob function returns the number of entries copied
into array.
See also dlgFileOpen(), dlgFileSave ()

fileglob performs a directory search using pattern.

pattern may contain '*' and '?' as wildcard characters. If pattern ends
with a '/', the contents of the given directory will be returned.

Names in the resulting array that end with a '/' are directory names.
The array is sorted alphabetically, with the directories coming first.

The special entries '.' and '..' (for the current and parent directories)
are never returned in the array.

If pattern doesn't match, or if you don't have permission to search the
given directory, the resulting array will be empty.

93

EAGLE User Language — Version 9.2.0

Note for Windows users

The directory delimiter in the array is always a forward slash. This makes sure User
Language Programs will work platform independently. In
the pattern the backslash ('\ ') is also treated as a directory delimiter.

Sorting filenames under Windows is done case insensitively.

Example

string all;
int n = fileglob(a, "*.brd");

Filename Functions

Function
Split a filename into its separate parts.
Syntax
string filedir(string file);
string fileext (string file);
string filename (string file);
string filesetext (string file, string newext);
Returns
filedir returns the directory of file (including the drive letter
under Windows) .
fileext returns the extension of file.
filename returns the file name of file (including the extension).
filesetext returns file with the extension set to newext.
See also Filedata Functions

Example

if (board) board(B) {
output (filesetext (B.name, ".out")) {

}

Filedata Functions

Function
Gets the timestamp and size of a file.
Syntax
int filesize(string filename) ;
int filetime (string filename) ;
Returns
filesize returns the size (in byte) of the given file.
filetime returns the timestamp of the given file in seconds. The
format is compatible to be used with the time functions.
See also time, Filename Functions

Example

94

EAGLE User Language — Version 9.2.0

board (B)
printf ("Board: %$s\nSize: %d\nTime: %s\n",
B.name, filesize (B.name),
t2string(filetime (B.name))) ;

File Input Functions

File input functions are used to read data from files.

The following file input is available:

e fileread()

See output () for information about how to write into a file.
fileread()
Function
Reads data from a file.
Syntax
int fileread(dest, string file);
Returns

fileread returns the number of objects read from the file.
The actual meaning of the return value depends on the type of dest.
See also lookup, strsplit, fileerror

If dest is a character array, the file will be read as raw binary data and
the return value reflects the number of bytes read into the character array
(which is equal to the file size).

If dest is a string array, the file will be read as a text file (one line
per array member) and the return value will be the number of lines read
into the string array. Newline characters will be stripped.

If dest is a string, the entire file will be read into that string and the
return value will be the length of that string (which is not necessarily
equal to the file size, if the operating system stores text files with
"cr/1lf" instead of a "newline" character).

Example

char b[];

int nBytes = fileread(b, "data.bin");
string lines|[];

int nLines = fileread(lines, "data.txt");
string text;

int nChars = fileread(text, "data.txt");

Mathematical Functions

Mathematical functions are used to perform mathematical operations.

The following mathematical functions are available:

95

EAGLE User Language — Version 9.2.0

e abs()

e acos|()
e asin()
e atan()
e ceil()
e cos|()

e exp()

e floor()
e frac()
e 1log()

e 10gl0()
e max()

e min{()

e pow()

Error Messages

If the arguments of a mathematical function call lead to an error, the
error message will show the actual values of the arguments. Thus the
statements

real x = -1.0;

real r = sqrt (2 * x);

will lead to the error message

Invalid argument in call to 'sqgrt(-2)'

Absolute, Maximum and Minimum
Functions

Function

Absolute, maximum and minimum functions.
Syntax

type abs (type x);

type max(type x, type y);

type min(type X, type y);
Returns

abs returns the absolute value of x.

max returns the maximum of x and y.

min returns the minimum of x and y.

The return type of these functions is the same as the (larger) type
of the arguments. type must be one of char, int or real.

Example

real x = 2.567, y = 3.14;
printf ("The maximum is %f\n", max(x, y));

EAGLE User Language — Version 9.2.0

Rounding Functions

Function
Rounding functions.
Syntax
real ceil (real x);
real floor(real Xx);
real frac(real x);
real round(real Xx);
real trunc(real Xx);
Returns
ceil returns the smallest integer not less than x.
floor returns the largest integer not greater than x.
frac returns the fractional part of x.
round returns x rounded to the nearest integer.
trunc returns the integer part of x.

Example

real x = 2.567;
printf ("The rounded value of %f is %$f\n", x, round(x)):;

Trigonometric Functions

Function
Trigonometric functions.
Syntax
real acos (real x);
real asin(real x);
real atan(real x)
real cos(real x);
real sin(real x);
real tan(real x);
Returns
acos returns the arc cosine of x.
asin returns the arc sine of x.
atan returns the arc tangent of x.
cos returns the cosine of x.
sin returns the sine of x.
tan returns the tangent of x.

’

Constants
PI the value of "pi" (3.14...)

Note

Angles are given in radian.

Example

real x = PI / 2;
printf ("The sine of %f is %f\n", x, sin(x));

EAGLE User Language — Version 9.2.0

Exponential Functions

Function
Exponential Functions.
Syntax
real exp(real x);
real log(real x);
real loglO(real x);
real pow(real x, real y);
real sqgrt(real x);
Returns
exp returns the exponential e to the power of x.
log returns the natural logarithm of x.
1logl0 returns the base 10 logarithm of x.
pow returns the value of x to the power of y.
sgrt returns the square root of x.

Example

real x = 2.1;
printf ("The square root of %f is %$f\n", x, sqrt(x));
printf ("The 3rd root of %$f is %$f\n", x, pow(x, 1.0/3));

Miscellaneous Functions

Miscellaneous functions are used to perform various tasks.

The following miscellaneous functions are available:

e country()

e exit()

e fdlsignature ()
e language ()

e lookup ()
e palette()
e sort ()

e status|()

e system()

e Configuration Parameters
e Unit Conversions

Configuration Parameters

Function
Store and retrieve configuration parameters.
Syntax
string cfgget (string name[, string default]);
void cfgset (string name, string value);
Returns
cfgget returns the value of the parameter stored under the
given name. If no such parameter has been stored, yet, the value of
the optional default is returned (or an empty string, if
no default is given).

EAGLE User Language — Version 9.2.0

The cfgget function retrieves values that have previously been stored with
a call to cfgset().

The cfgset function sets the parameter with the given name to the
given value.

The valid characters for name are 'A'-'Z', 'a'-'z', '0'-'9', '.'" and ' '.
Parameter names are case sensitive.

The parameters are stored in the user's eaglerc file. To ensure that
different User Language Programs don't overwrite each other's parameters in
case they use the same parameter names, it is recommended to put the name
of the ULP at the beginning of the parameter name. For example, a ULP

named mytool.ulp that uses a parameter named MyParam could store that
parameter under the name

mytool .MyParam
Because the configuration parameters are stored in the eaglerc file, which
also contains all of EAGLE's other user specific parameters, it is also

possible to access the EAGLE parameters with cfgget () and cfgset (). In
order to make sure no ULP parameters collide with any EAGLE parameters, the
EAGLE parameters must be prefixed with "EAGLE:", as in

EAGLE:Option.XrefLabelFormat

Note that there is no documentation of all of EAGLE's internal parameters
and how they are stored in the eaglerc file. Also, be very careful when
changing any of these parameters! As with the eaglerc file itself, you
should only manipulate these parameters if you know what you are doing!
Some EAGLE parameters may require a restart of EAGLE for changes to take
effect.

In the eaglerc file the User Language parameters are stored with the
prefix "ULP:". Therefore this prefix may be optionally put in front of User
Language parameter names, as in

ULP:mytool .MyParam

Example
string MyParam = cfgget ("mytool.MyParam", "SomeDefault"):;
MyParam = "OtherValue";

cfgset ("mytool .MyParam", MyParam) ;

country ()

Function

Returns the country code of the system in use.
Syntax

string country () ;
Returns

country returns a string consisting of two uppercase characters that
identifies the country used on the current system. If no such country
setting can be determined, the default "US" will be returned.

See also language

Example

dlgMessageBox ("Your country code is: " + country()):;

99

EAGLE User Language — Version 9.2.0

exit ()

Function

Exits from a User Language Program.
Syntax

void exit (int result);

void exit (string command) ;
See also RUN

The exit function terminates execution of a User Language Program.

If an integer result is given it will be used as the return value of the
program.

If a string command is given, that command will be executed as if it were
entered into the command line immediately after the RUN command. In that
case the return value of the ULP is set to EXIT SUCCESS.

Constants

EXIT_SUCCESS return value for successful program execution (value 0)
EXIT FAILURE return value for failed program execution (value -1)

fdlsignature ()

Function

Calculates a digital signature for Premier Farnell's Design Link.
Syntax

string fdlsignature(string s, string key);
The fdlsignature function is used to calculate a digital signature when
accessing Premier Farnell's Design Link interface.

language ()

Function

Returns the language code of the system in use.
Syntax

string language () ;
Returns

language returns a string consisting of two lowercase characters that
identifies the language used on the current system. If no such
language setting can be determined, the default "en" will be
returned.

See also country

The language function can be used to make a ULP use different message
string, depending on which language the current system is using.

In the example below all the strings used in the ULP are listed in the
string array I18N[], preceeded by a string containing the various language
codes supported by this ULP. Note the vtab characters used to separate the
individual parts of each string (they are important for

the lookup function) and the use of the commas to separate the strings. The
actual work is done in the function tr (), which returns the translated
version of the given string. If the original string can't be found in

the I18N array, or there is no translation for the current language, the
original string will be used untranslated.

100

EAGLE User Language — Version 9.2.0

The first language defined in the I18N array must be the one in which the
strings used throughout the ULP are written, and should generally be
English in order to make the program accessible to the largest number of

users.

Example

string I18N[] = {
"en\v"
"de\v"
"it\v"

4

"T18N Demo\v"

"Beispiel f?r Internationalisierung\v"
"Esempio per internazionalizzazione\v"
4

"Hello world!\v"

"Hallo Welt!\v"

"Ciao mondo!\v"

14
"+Ok\v"
"+Ok\V"
"+Approvazione\v"
14
"—Cancel\v"
"-Abbrechen\v"
"-Annullamento\v"
}i
int Language = strstr(I18N[0], language()) / 3;
string tr(string s)
{
string t = lookup(I18N, s, Language, '\v');
return t ? t : s;
}
dlgDialog (tr ("I18N Demo")) {
dlgHBoxLayout dlgSpacing (350) ;
dlgLabel (tr ("Hello world!"));
dlgHBoxLayout {
dlgPushButton (tr ("+0k")) dlgAccept ()
dlgPushButton (tr ("-Cancel")) dlgReject ()
}
i

lookup ()

Function
Looks up data in a string array.

Syntax
string lookup (string array[], string key,
separator]);
string lookup (string array[], string key,
separator]) ;

Returns

int field index[, char

string field name[, char

lookup returns the value of the field identified

by field index or field name.

If the field doesn't exist, or no string matching key is found, an

empty string is returned.
See also fileread, strsplit

101

EAGLE User Language — Version 9.2.0

An array that can be used with lookup() consists of strings of text, each
string representing one data record.

Each data record contains an arbitrary number of fields, which are
separated by the character separator (default is '\t', the tabulator). The
first field in a record is used as the key and is numbered 0.

All records must have unique key fields and none of the key fields may be
empty - otherwise it is undefined which record will be found.

If the first string in the array contains a "Header" record (i.e. a record
where each field describes its contents), using lookup with

a field name string automatically determines the index of that field. This
allows using the lookup function without exactly knowing which field index
contains the desired data.

It is up to the user to make sure that the first record actually contains
header information.

If the key parameter in the call to lookup() is an empty string, the first
string of the array will be used. This allows a program to determine
whether there is a header record with the required field names.

If a field contains the separator character, that field must be enclosed in
double quotes (as in "abc;def", assuming the semicolon (';') is used as
separator) . The same applies if the field contains double quotes ("), in
which case the double quotes inside the field have to be doubled (as

in "abc;""def"";ghi", which would be abc;"def";ghi).

It is best to use the default "tab" separator, which doesn't have these
problems (no field can contain a tabulator).

Here's an example data file (';' has been used as separator for better
readability) :

Name;Manufacturer; Code; Price
7400; Intel;I-01-234-97;5$0.10
68HC12;Motorola;M68HC1201234;$3.50

Example

string OrderCodes([];

if (fileread (OrderCodes, "ordercodes") > 0) {
if (lookup (OrderCodes, "", "Code", ';')) {

schematic (SCH) {
SCH.parts (P) {
string OrderCode;
// both following statements do exactly the same:
OrderCode = lookup (OrderCodes, P.device.name, "Code", ';');
OrderCode = lookup (OrderCodes, P.device.name, 2, ';'):;

}
}

else
dlgMessageBox ("Missing 'Code' field in file 'ordercodes');

palette()

Function

102

EAGLE User Language — Version 9.2.0

Returns color palette information.
Syntax
int palette(int index[, int typel):
Returns
The palette function returns an integer ARGB value in the form
Oxaarrggbb, or the type of the currently used palette (depending on
the value of index).
The palette function returns the ARGB value of the color with the
given index (which may be in the range 0..PALETTE ENTRIES-1). If type is
not given (or is -1) the palette assigned to the current editor window will
be used. Otherwise type specifies which color palette to use
(PALETTE BLACK, PALETTE WHITE or PALETTE COLORED) .

The special value -1 for index makes the function return the type of the
palette that is currently in use by the editor window.

If either index or type is out of range, an error message will be given and
the ULP will be terminated.

Constants

PALETTE_TYPES the number of palette types (3)
PALETTE_BLACK the black background palette (0)
PALETTE_WHITE the white background palette (1)

PALETTE_COLORED the colored background palette (2)
PALETTE_ENTRIES the number of colors per palette (64)

sleep ()

Function

Sleeps number of seconds.
Syntax

void sleep (int seconds);
See also time ()

The sleep function delays the execution of an ULP program for number
of seconds.

sort ()
Function
Sorts an array or a set of arrays.
Syntax
void sort (int number, arrayl[, array2,...1);
The sort function either directly sorts a given arrayl, or it sorts a set
of arrays (starting with array2), in which case arrayl is supposed to be an

array of int, which will be used as a pointer array.

In any case, the number argument defines the number of items in the
array(s) .

Sorting a single array

103

EAGLE User Language — Version 9.2.0

If the sort function is called with one single array, that array will be
sorted directly, as in the following example:

string A[];
int n = 0;
A[n++] = "World";
A[n++] = "Hello";
A[n++] = "The truth is out there...";
sort (n, A);
for (int i = 0; 1 < n; ++1i)
printf (A[i]);

Sorting a set of arrays

If the sort function is called with more than one array, the first array

must be an array of int, while all of the other arrays may be of any array

type and hold the data to be sorted. The following example illustrates how

the first array will be used as a pointer:

numeric string Nets[], Parts[], Instances[], Pins[];

int n = 0;

int index][];

schematic (S) {
)

S.nets (N) N.pinrefs (P) {
Nets[n] = N.name;
Parts[n] = P.part.name;
Instances[n] = P.instance.name;
Pins[n] = P.pin.name;
++n;

}
sort (n, index, Nets, Parts, Instances, Pins);
for (int i = 0; 1 < n; ++1i)
printf ("$-8s %-8s %-8s %-8s\n",
Nets[index[i]], Parts[index[i]],
Instances([index[i1]], Pins[index[i]1]);
}
The idea behind this is that one net can have several pins connected to it,
and in a netlist you might want to have the net names sorted, and within
one net you also want the part names sorted and so on.

Note the use of the keyword numeric in the string arrays. This causes the
strings to be sorted in a way that takes into account a numeric part at the
end of the strings, which leads to IC1l, IC2,... IC9, IC10 instead of the
alphabetical order IC1, IC10, IC2,...ICO.

When sorting a set of arrays, the first (index) array must be of

type int and need not be initialized. Any contents the index array might
have before calling the sort function will be overwritten by the resulting
index values.

status ()

Function

Displays a status message in the status bar.
Syntax

void status(string message);
See also dlgMessageBox ()

The status function displays the given message in the status bar of the
editor window in which the ULP is running.

104

EAGLE User Language — Version 9.2.0

system ()

Function

Executes an external program.
Syntax

int system(string command) ;
Returns

The system function returns the exit status of the command. This is
typically 0 if everything was ok, and non-zero in case of an error.
The system function executes the external program given by
the command string, and waits until the program ends.

Input/Output redirection

If the external program shall read its standard input from (or write its
standard output to) a particular file, input/output needs to be redirected.
On Linux and Mac OS X this is done by simply adding a '<' or '>' to the command
line, followed by the desired file name, as in
system ("program < infile > outfile");
which runs program and makes it read from infile and write to outfile.

On Windows you have to explicitly run a command processor to do this, as in
system ("cmd.exe /c program < infile > outfile");

(on DOS based Windows systems use command. com instead of cmd. exe).

Background execution

The system function waits until the given program has ended. This is useful
for programs that only run for a few seconds, or completely take over the
user's attention.

If an external program runs for a longer time, and you want the system call to return

immediately, without waiting for the program to end, you can simply add an '&' to the

command string under Linux and Mac OS X, as in
system ("program &") ;

Under Windows you need to explicitly run a command processor to do this, as in
system ("cmd.exe /c start program") ;

(on DOS based Windows systems use command. com instead of cmd. exe).

Example

int result = system("simulate -f filename");

This would call a simulation program, giving it a file which the ULP has
just created. Note that simulate here is just an example, it is not part of
the EAGLE package!

If you want to have control over what system commands are actually
executed, you can write a wrapper function that prompts the user for
confirmation before executing the command, like

int MySystem(string command)
{
if (dlgMessageBox ("!0Ok to execute the following command?<p><tt>" +
command + "</tt>", "&Yes", "&No") == 0)
return system(command) ;

105

EAGLE User Language — Version 9.2.0

return -1;

}

int result = MySystem("simulate -f filename");

Unit Conversions

Function
Converts internal units.
Syntax
real u2inch (int n);
real u2mic(int n);
real u2mil (int n);
real uZmm(int n);
int inch2u(real n);
int mic2u(real n);
int mil2u(real n);
int mm2u(real n);
Returns
u2inch returns the value of n in inch.
u2mic returns the value of n in microns (1/1000mm) .
u2mil returns the value of n in mil (1/1000inch).
u2mm returns the value of n in millimeters.
inch2u returns the value of n (which is in inch) as internal units.
mic2u returns the value of n (which is in microns) as internal units.
mil2u returns the value of n (which is in mil) as internal units.
mm2u returns the value of n (which is in millimeters) as internal
units.
See also UL GRID

EAGLE stores all coordinate and size values as int values with a resolution
of 1/320000mm (0.003125u). The above unit conversion functions can be used

to convert these internal units to the desired measurement units, and vice

versa.

Example

board (B) {
B.elements (E) {
printf ("%s at (%f, %f)\n", E.name,
u2mm(E.x), u2mm(E.y));
}

Network Functions

Network functions are used to access remote sites on the Internet.

The following network functions are available:

e neterror()
e netget()
e netpost ()

neterror ()

106

EAGLE User Language — Version 9.2.0

Function

Returns the error message of the most recent network function call.
Syntax

string neterror (void);
Returns

neterror returns a textual message describing the error that occurred
in the most recent call to a network function.
If no error has occurred, the return value is an empty string.

See also netget, netpost

The neterror function should be called after any of the other network

functions has returned a negative value, indicating that an error has

occurred. The return value of neterror is a textual string that can be
presented to the user.

For errors related to SSL connections (HTTPS) also consider the note
in netget.

Example

string Result;
if (netget (Result, "http://web.cadsoft.de/cgi-bin/http-
test?see=me&hear=them") >= 0) {
// process Result
}
else
dlgMessageBox (neterror()) ;

netget ()

Function

Performs a GET request on the network.
Syntax

int netget (dest, string url[, int timeout]);
Returns

netget returns the number of objects read from the network.
The actual meaning of the return value depends on the type of dest.
In case of an error, a negative value is returned and neterror () may
be called to display an error message to the user.

See also netpost, neterror, fileread

The netget function sends the given url to the network and stores the
result in the dest wvariable.

If no network activity has occurred for timeout seconds, the connection
will be terminated. The default timeout is 20 seconds.

The url must contain the protocol to use (HTTP, HTTPS or FTP) and can
contain name=value pairs of parameters, as in

http://web.cadsoft.de/cgi-bin/http-test?see=me&hear=them
ftp://ftp.cadsoft.de/eagle/userfiles/README

If a user id and password is required to access a remote site, these can be
given as

https://userid:password@www.secret—-site.com/...

If dest is a character array, the result will be treated as raw binary data
and the return value reflects the number of bytes stored in the character
array.

107

EAGLE User Language — Version 9.2.0

If dest is a string array, the result will be treated as text data (one
line per array member) and the return value will be the number of lines
stored in the string array. Newline characters will be stripped.

If dest is a string, the result will be stored in that string and the
return value will be the length of the string. Note that in case of binary
data the result is truncated at the first occurrence of a byte with the
value 0x00.

If you need to use a proxy to access the Internet with HTTP or HTTPS, you
can set that up in the "Configure" dialog under "Help/Check for Update"™ in
the Control Panel.

SSL Connections

For SSL connections (request per HTTPS) certificates are necessary, which
may miss or be expired on some systems. The connection fails then with
according error message that you can query with neterror ().

With this error message it should be possible to install missing or update
expired certificates and make the connection work this way. It depends on
your system how to do this (in Windows e.g. via Control Panel/Internet
Options etc.).

Example

string Result;
if (netget (Result, "http://web.cadsoft.de/cgi-bin/http-
test?see=me&hear=them") >= 0) {
// process Result
}
else
dlgMessageBox (neterror()) ;

netpost ()

Function
Performs a POST request on the network.

Syntax
int netpost (dest, string url, string data[, int timeout[, string
content type] 1);

Returns

netpost returns the number of objects read from the network.
The actual meaning of the return value depends on the type of dest.
In case of an error, a negative value is returned and neterror () may
be called to display an error message to the user.

See also netget, neterror, fileread

The netpost function sends the given data to the given url on the network
and stores the result in the dest variable.

If no network activity has occurred for timeout seconds, the connection
will be terminated. The default timeout is 20 seconds.

If content type is given, it overwrites the default content type

of "text/html; charset=utf-8".

The url must contain the protocol to use (HTTP or HTTPS).

If a user id and password is required to access a remote site, these can be
given as

108

EAGLE User Language — Version 9.2.0

https://userid:password@www.secret-site.com/...

If dest is a character array, the result will be treated as raw binary data
and the return value reflects the number of bytes stored in the character
array.

If dest is a string array, the result will be treated as text data (one
line per array member) and the return value will be the number of lines
stored in the string array. Newline characters will be stripped.

If dest is a string, the result will be stored in that string and the
return value will be the length of the string. Note that in case of binary
data the result is truncated at the first occurrence of a byte with the
value 0x00.

If you need to use a proxy to access the Internet with HTTP or HTTPS, you
can set that up in the "Configure" dialog under "Help/Check for Update" in
the Control Panel.

If you should face problems related to SSL connections (HTTPS) consider the
note in netget.

Example

string Data = "see=me\nhear=them";

string Result;

if (netpost (Result, "http://web.cadsoft.de/cgi-bin/http-test", Data) >= 0)
{

// process Result

}
else
dlgMessageBox (neterror ()) ;

Printing Functions

Printing functions are used to print formatted strings.

The following printing functions are available:

e printf ()
e sprintf ()

printf ()

Function

Writes formatted output to a file.
Syntax

int printf(string format[, argument, ...]);
Returns

The printf function returns the number of characters written to the
file that has been opened by the most recent output statement.

In case of an error, printf returns -1.

See also sprintf, output, fileerror

109

EAGLE User Language — Version 9.2.0

Format string

The format string controls how the arguments will be converted, formatted
and printed. There must be exactly as many arguments as necessary for the

format. The number and type of arguments will be checked against the
format, and any mismatch will lead to an error message.

The format string contains two types of objects - plain
characters and format specifiers:

e Plain characters are simply copied verbatim to the output

e TFormat specifiers fetch arguments from the argument list and apply
formatting to them

Format specifiers

A format specifier has the following form:

[}

% [flags] [width] [.prec] type

Each format specification begins with the percent character (%). After
the % comes the following, in this order:

e an optional sequence of flag characters, [flags]
e an optional width specifier, [width]

e an optional precision specifier, [.prec]

e the conversion type character, type

Conversion type characters

signed decimal int

unsigned octal int

unsigned decimal int

unsigned hexadecimal int (with a, b,...)

unsigned hexadecimal int (with A, B,...)

signed real value of the form [-]dddd.dddd
signed real value of the form [-]d.dddde[+]ddd
same as e, but with E for exponent

signed real value in either e or f form, based on given value and precision
same as g, but with E for exponent if e format used
single character

character string

the ¢ character is printed

n Q QWY @H 0 H X X © 0 Q

oo

Flag characters

The following flag characters can appear in any order and combination.

"-" the formatted item is left-justified within the field; normally, items are right-justified

a signed, positive item will always start with a plus character (+); normally, only
negative items begin with a sign

"+"

110

EAGLE User Language — Version 9.2.0

a signed, positive item will always start with a space character; if both "+" and " " are
specified, "+" overrides " "

Width specifiers

The width specifier sets the minimum field width for an output value.

Width is specified either directly, through a decimal digit string, or
indirectly, through an asterisk (*). If you use an asterisk for the width
specifier, the preceding argument (which must be an int) to the one being
formatted (with this format specifier) determines the minimum output field
width.

In no case does a nonexistent or small field width cause truncation of a
field. If the result of a conversion is wider than the field width, the
field is simply expanded to contain the conversion result.

At least n characters are printed. If the output value has less than n characters, the output
is padded with blanks (right-padded if "-" flag given, left-padded otherwise).

At least n characters are printed. If the output value has less than n characters, it is filled
on the left with zeros.

The argument list supplies the width specifier, which must precede the actual argument
being formatted.

On

Precision specifiers

A precision specifier always begins with a period (.) to separate it from
any preceding width specifier. Then, like width, precision is specified
either directly through a decimal digit string, or indirectly, through an
asterisk (*). If you use an asterisk for the precision specifier, the
preceding argument (which must be an int) to the one being formatted (with
this format specifier) determines the precision.

none Precision set to default.

.0 For int types, precision is set to default; for real types, no decimal point is printed.
n characters or n decimal places are printed. If the output value has more

.n than n characters the output might be truncated or rounded (depending on the type
character).

The argument list supplies the precision specifier, which must precede the actual
argument being formatted.

Default precision values

douxX 1

eEf 6

gG all significant digits
c no effect

print entire string

How precision specification (.n) affects
conversion

111

EAGLE User Language — Version 9.2.0

.n specifies that at least n characters are printed. If the input argument has less
douxX than n digits, the output value is left-padded with zeros. If the input argument has
more than n digits, the output value is not truncated.

.n specifies that n characters are printed after the decimal point, and the last digit

eEf . .

printed is rounded.
gG .n specifies that at most n significant digits are printed.
c .n has no effect on the output.

.n specifies that no more than n characters are printed.

Binary zero characters

Unlike sprintf, the printf function can print binary zero characters
(0x00) .
char ¢ = 0x00;

printf ("%c", c);
Example

int 1 = 42;

real r = 3.14;

char ¢ = 'A';

string s = "Hello";
printf("Integer %$8d\n", 1);
printf ("Hex: %$8X\n", 1);
printf ("Real %$8f\n", r);
printf("Char %$-8c\n", c);
printf ("String: %-8s\n", s);

sprintf ()

Function

Writes formatted output into a string.
Syntax

int sprintf (string result, string format[, argument, ...]);
Returns

The sprintf function returns the number of characters written into
the result string.

In case of an error, sprintf returns -1.

See also printf

Format string

See printf.

Binary zero characters

Note that sprintf can not return strings with embedded binary zero
characters (0x00). If the resulting string contains a binary zero
character, any characters following that zero character will be dropped.
Use printf if you need to output binary data.

112

EAGLE User Language — Version 9.2.0

Example

string result;
int number = 42;
sprintf (result, "The number is %d", number);

String Functions

String functions are used to manipulate character strings.

The following string functions are available:

e strchr()

e strjoin()
e strlen()

e strlwr()

e strrchr()
e strrstr()
e strsplit()
e strstr()

e strsub/()
e strtod()
e strtol()
e strupr()
e strxstr()

strchr ()

Function
Scans a string for the first occurrence of a given character.
Syntax
int strchr(string s, char c[, int index]);
Returns
The strchr function returns the integer offset of the character in
the string, or -1 if the character does not occur in the string.
See also strrchr, strstr

If index is given, the search starts at that position. Negative values are
counted from the end of the string.

Example

string s = "This is a string";
char ¢ = 'a';

int pos = strchr(s, c);

if (pos >= 0)

printf ("The character %c is at position %d\n", c, pos);
else

printf ("The character was not found\n");

strjoin()

113

EAGLE User Language — Version 9.2.0

Function

Joins a string array to form a single string.
Syntax

string strjoin(string array[], char separator);
Returns

The strjoin function returns the combined entries of array.
See also strsplit, lookup, fileread

strjoin joins all entries in array, delimited by the given separator and
returns the resulting string.

If separator is the newline character ('\n') the resulting string will be
terminated with a newline character. This is done to have a text file that
consists of N lines (each of which is terminated with a newline) and is
read in with the fileread() function and split into an array of N strings
to be joined to the original string as read from the file.

Example

string a[] = { "Field 1", "Field 2", "Field 3" };
string s = strjoin(a, ':');

strlen ()

Function
Calculates the length of a string.
Syntax
int strlen(string s);
Returns
The strlen function returns the number of characters in the string.

Example
string s = "This is a string";
int 1 = strlen(s);
printf ("The string is %d characters long\n", 1);
Function
Converts uppercase letters in a string to lowercase.
Syntax
string strlwr (string s);
Returns

The strlwr function returns the modified string. The original string
(given as parameter) is not changed.
See also strupr, tolower

Example

string s = "This Is A String";

string r = strlwr(s);

printf ("Prior to strlwr: %$s - after strlwr: %s\n", s, r);

114

EAGLE User Language — Version 9.2.0

strrchr ()

Function

Scans a string for the last occurrence of a given character.
Syntax

int strrchr(string s, char c[, int index]);
Returns

The strrchr function returns the integer offset of the character in
the string, or -1 if the character does not occur in the string.
See also strchr, strrstr

If index is given, the search starts at that position. Negative values are
counted from the end of the string.

Example

string s = "This is a string";
char ¢ = 'a';

int pos = strrchr(s, c);

if (pos >= 0)

printf ("The character %c is at position %d\n", c, pos);
else

printf ("The character was not found\n");

strrstr ()

Function

Scans a string for the last occurrence of a given substring.
Syntax

int strrstr(string sl, string s2[, int index]);
Returns

The strrstr function returns the integer offset of the first
character of s2 in sl, or -1 if the substring does not occur in the
string.

See also strstr, strrchr

If index is given, the search starts at that position. Negative values are
counted from the end of the string.

Example
string sl = "This is a string", s2 = "is a";
int pos = strrstr(sl, s2);

if (pos >= 0)

printf ("The substring starts at %d\n", pos);
else

printf ("The substring was not found\n");

strsplit()

Function
Splits a string into separate fields.
Syntax
int strsplit(string &arrayl[], string s, char separator);

115

EAGLE User Language — Version 9.2.0

Returns
The strsplit function returns the number of entries copied
into array.

See also strjoin, lookup, fileread

strsplit splits the string s at the given separator and stores the
resulting fields in the array.

If separator is the newline character ('\n') the last field will be
silently dropped if it is empty. This is done to have a text file that
consists of N lines (each of which is terminated with a newline) and is
read in with the fileread() function to be split into an array of N
strings. With any other separator an empty field at the end of the string
will count, so "a:b:c:" will result in 4 fields, the last of which is
empty.

Example

string all;
int n = strsplit(a, "Field 1:Field 2:Field 3", ':');

strstr ()

Function

Scans a string for the first occurrence of a given substring.
Syntax

int strstr(string sl, string s2[, int index]);
Returns

The strstr function returns the integer offset of the first character
of s2 in sl, or -1 if the substring does not occur in the string.
See also strrstr, strchr, strxstr

If index is given, the search starts at that position. Negative values are
counted from the end of the string.

Example
string sl = "This is a string", s2 = "is a";
int pos = strstr(sl, s2);

if (pos >= 0)

printf ("The substring starts at %d\n", pos);
else

printf ("The substring was not found\n");

strsub ()

Function

Extracts a substring from a string.
Syntax

string strsub(string s, int start[, int lengthl]);
Returns

The strsub function returns the substring indicated by
the start and length value.

116

EAGLE User Language — Version 9.2.0

The value for length must be positive, otherwise an empty string will
be returned. If length is ommitted, the rest of the string (beginning
at start) is returned.

If start points to a position outside the string, an empty string is
returned.

Example

string s = "This is a string";

string t = strsub(s, 4, 7);

printf ("The extracted substring is: %s\n", t);

strtod ()

Functi
Syntax

Return

See al

on
Converts a string to a real value.

real strtod(string s);

s

The strtod function returns the numerical representation of the given
string as a real value. Conversion ends at the first character that
does not fit into the format of a real constant. If an error occurs
during conversion of the string 0.0 will be returned.

so strtol

Example

string s = "3.1415";

real r = strtod(s);

printf ("The value is %f\n", r);

strtol ()

Functi
Syntax

Return

See al

on
Converts a string to an integer value.

int strtol (string s);

s

The strtol function returns the numerical representation of the given
string as an int value. Conversion ends at the first character that
does not fit into the format of an integer constant. If an error
occurs during conversion of the string 0 will be returned.

so strtod

Example

string s = "1234";

int 1 = strtol(s);

printf ("The value is %d\n", 1i);

strupr ()

117

EAGLE User Language — Version 9.2.0

Function
Converts lowercase letters in a string to uppercase.
Syntax
string strupr (string s);
Returns
The strupr function returns the modified string. The original string
(given as parameter) is not changed.
See also strlwr, toupper

Example

string s = "This Is A String";

string r = strupr(s);

printf ("Prior to strupr: %$s - after strupr: %s\n", s, r);

strxstr ()

Function
Scans a string for the first occurrence of a given regular
expression.
Syntax
int strxstr(string sl, string s2[, int index[, int &lengthll]);
Returns

The strxstr function returns the integer offset of the substring in
sl that matches the regular expression in s2, or -1 if the reqgular
expression does not match in the string.

See also strstr, strchr, strrstr

If index is given, the search starts at that position. Negative values are
counted from the end of the string.

If length is given, the actual length of the matching substring is returned
in that wvariable.

Regular expressions allow you to find a pattern within a text string. For
instance, the regular expression "i.*a" would find a sequence of characters
that starts with an 'i', followed by any character ('.') any number of
times ('*'), and ends with an 'a'. It would match on "is a" as well as "is
this a" or "ia".

Details on regular expressions can be found, for instance, in the

book Mastering Regular Expressions by Jeffrey E. F. Friedl.

Example

string sl = "This is a string", s2 = "i.*a";
int len = 0;

int pos = strxstr(sl, s2, 0, len);

if (pos >= 0)

printf ("The substring starts at %d and is %d charcaters long\n", pos,
len) ;
else

printf ("The substring was not found\n");

URN Functions

URN functions are used to process URNs.

118

EAGLE User Language — Version 9.2.0

The following URN functions are available:

e urnbase ()
e urnversion|()

urnbase ()

Function
Extracts the base URN from a URN string.

Syntax
string urnbase (string urn);

Returns
The urnbase function returns the base URN of the provided URN, i.e.
the URN without trailing version or / - e.g. the base URN of
"urn:adsk.eagle:footprint:123/4" is "urn:adsk.eagle:footprint:123".
If no version is present, the input string will be returned.

Example

string urn = "urn:adsk.eagle:footprint:123/4";
string base = urnbase (urn) ;
printf ("The base URN is: %s\n", base);

urnversion ()

Function
Extracts the version from a URN string.
Syntax
int urnversion (string urn);
Returns
The urnversion function returns the version of the provided URN, i.e.
the number following the /. If no version is present, -1 is returned.
Example
string urn = "urn:adsk.eagle:footprint:123/4";
int version = urnversion (urn);

printf ("The URN version is: %d\n", version);

Time Functions

Time functions are used to get and process time and date information.

The following time functions are available:

e sleep()

e t2day ()

e t2dayofweek ()
e t2hour()

e t2minute ()
e t2month ()
e t2second()

119

EAGLE User Language — Version 9.2.0

e t2string()
e t2year|()

e time()

e timems|()

time ()

Function

Gets the current system time.
Syntax

int time (void);
Returns

The time function returns the current system time as the number of
seconds elapsed since a system dependent reference date.
See also Time Conversions, filetime, timems ()

Example

int CurrentTime = time () ;

timems ()

Function

Gets the number of milliseconds since the start of the ULP.
Syntax

int timems (void);
Returns

The timems function returns the number of milliseconds since the
start of the ULP.

After 86400000 milliseconds (i.e. every 24 hours), the value starts
at 0 again.

See also time

Example

int elapsed = timems () ;

Time Conversions

Function

Convert a time value to day, month, year etc.
Syntax

int t2day(int t);

int t2dayofweek (int t);

int t2hour (int t);

int t2minute (int t);

int t2month (int t);

int t2second(int t);

int t2year (int t);

string t2string(int t[, string format]);

120

EAGLE User Language — Version 9.2.0

Returns

t2day returns the day of the month (1..31)

t2dayofweek returns the day of the week (0O=sunday..6)

t2hour returns the hour (0..23)

t2minute returns the minute (0..59)

t2month returns the month (0..11)

t2second returns the second (0..59)

t2year returns the year (including century!)

t2string returns a formatted string containing date and time
See also time

The t2string function without the optional format parameter converts the
given time t into a country specific string in local time.

If t2string is called with a format string, that format is used to
determine what the result should look like.

The following expressions can be used in a format string:

d the day as a number without a leading zero (1 to 31)

dd the day as a number with a leading zero (01 to 31)

ddd the abbreviated localized day name (e.g. "Mon" to "Sun")
dddd the long localized day name (e.g. "Monday" to "Sunday")
M the month as a number without a leading zero (1-12)

MM the month as a number with a leading zero (01-12)

MMM the abbreviated localized month name (e.g. "Jan" to "Dec")
MMMM the long localized month name (e.g. "January" to "December")

vy the year as a two digit number (00-99)

Vyyy the year as a four digit number

h the hour without a leading zero (0 to 23 or 1 to 12 if AM/PM display)

hh the hour with a leading zero (00 to 23 or 01 to 12 if AM/PM display)

m the minute without a leading zero (0 to 59)

mm the minute with a leading zero (00 to 59)

S the second without a leading zero (0 to 59)

sS the second with a leading zero (00 to 59)

, the milliseconds without leading zeros (always 0, since the given time only has a
one second resolution)

_— the milliseconds with leading zeros (always 000, since the given time only has a
one second resolution)

AP use AM/PM display (4P will be replaced by either "AM" or "PM")

ap use am/pm display (ap will be replaced by either "am" or "pm")

U display the given time as UTC (must be the first character; default is local time)

All other characters will be copied "as is". Any sequence of characters
that are enclosed in singlequotes will be treated as text and not be used
as an expression. Two consecutive single quotes ('') are replaced by a
single quote in the output.

Example

int t = time () ;
printf ("It is now %02d:%02d:%02d\n",
t2hour (t), t2minute(t), t2second(t)):;
printf ("ISO time is %s\n", t2string(t, "Uyyyy-MM-dd hh:mm:ss"));

121

EAGLE User Language — Version 9.2.0

Object Functions

Object functions are used to access common information about objects.

The following object functions are available:

e clrgroup()

e ingroup ()

e setgroup ()

e setvariant ()
e variant ()

clrgroup ()

Function
Clears the group flags of an object.
Syntax
void clrgroup (object) ;
See also ingroup (), setgroup (), GROUP command
The clrgroup () function clears the group flags of the given object, so that

it is no longer part of the previously defined group.

When applied to an object that contains other objects (like a UL BOARD or
UL NET) the group flags of all contained objects are cleared recursively,
but with analogous limitations like for setgroup() .

Example

board (B) {
B.elements (E)
clrgroup (E) ;
}

ingroup ()

Function
Checks whether an object is in the group.
Syntax
int ingroup (object) ;
Returns
The ingroup function returns a non-zero value if the given object is
in the group.
See also clrgroup (), setgroup (), GROUP command

If a group has been defined in the editor, the ingroup() function can be
used to check whether a particular object is part of the group.

Objects with a single coordinate that are individually selectable in the
current drawing (like UL TEXT, UL VIA, UL CIRCLE etc.) return a non-zero
value in a call to ingroup() if that coordinate is within the defined
group.

122

EAGLE User Language — Version 9.2.0

A UL WIRE returns 0, 1, 2 or 3, depending on whether none, the first, the
second or both of its end points are in the group.

A UL RECTANGLE and UL FRAME returns a non-zero value if one or more of its
corners are in the group. The value has bit 0 set for the upper right
corner, bit 1 for the upper left, bit 2 for the bottom left, and bit 3 for
the bottom right corner.

Higher ranking objects that have no coordinates (UL _NET, UL SEGMENT,

UL SIGNAL, UL POLYGON) or that are actually not available as drawing
objects (UL_SHEET, UL DEVICESET, UL SYMBOL, UL FOOTPRINT), return a non-
zero value if one or more of the objects within them are in the group. For
details on the object hierarchies see Object Types.

UL CONTACTREF and UL_PINREF, though not having coordinates of their own,
return a non-zero value if the referenced UL _CONTACT or UL PIN,
respectively, 1s within the group.

For other not selectable objects like UL GRID, UL VARIANT or wires of a
UL TEXT or UL _FRAME object, the behaviour of ingroup() is undefined and
therefore should not be used.

Identifying the context menu object

If the ULP is started from a context menu the selected object can be
accessed by the group mechansim. A one element group is made from the
selected object. So it can be identified with ingroup(). (see

also SET and RUN).

Example

output ("group.txt") {
board (B) {
B.elements (E) {
if (ingroup (E))
printf ("Element %s is in the group\n", E.name);

setgroup ()

Function

Sets the group flags of an object.
Syntax

void setgroup (object[, int flags]);
See also clrgroup (), ingroup (), GROUP command

The setgroup () function sets the group flags of the given object, so that
it becomes part of the group.

If no flags are given, the object is added to the group as a whole (i.e.
all of its selection points, in case it has more than one).

If flags has a non-zero value, only the group flags of the given points of
the object are set. For a UL WIRE this means that 'l' sets the group flag
of the first point, '2' that of the second point, and '3' sets both. Any
previously set group flags remain unchanged by a call to setgroup().

123

EAGLE User Language — Version 9.2.0

When applied to an object that contains other objects (like a UL BOARD or
UL NET) the group flags of all contained objects are set recursively with
following limitations:

It's not the case for UL LIBRARY and UL SCHEMATIC. Subordinate objects that
are not selectable or not inidividually selectable are not flagged (e.g.

UL GRID or UL VARIANT objects or wires of UL TEXT or UL FRAME objects).

For details on the object hierarchies see Object Types.

Example

board (B) {
B.elements (E)
setgroup (E) ;
}

setvariant ()

Function
Sets the current assembly variant.
Syntax
int setvariant (string name);
See also variant (), UL VARIANTDEF, VARIANT command

The setvariant () function sets the current assembly variant to the one
given by name. This can be used to loop through all of the parts and "see"
their data exactly as defined in the given variant.

name must reference a valid assembly variant that is contained in the
current drawing.

This function returns a non-zero value if the given assembly variant
exists, zero otherwise.

The assembly variant that has been set by a call to setvariant() is only
active until the User Language Program returns. After that, the variant in
the drawing will be the same as before the start of the ULP.

Setting the assembly variant in a board is only possible if the consistent
schematic is loaded.

Example

if (setvariant ("My variant")) {
// do something

else

// error: unknown variant

variant ()

Function
Query the current assembly variant.
Syntax
string variant (void) ;
See also setvariant (), UL VARIANTDEF, VARIANT command

124

EAGLE User Language — Version 9.2.0

The variant () function returns the name of the current assembly variant. If
no variant is currently selected, the empty string ('') is returned.
Example

string CurrentVariant = variant();

XML Functions

XML functions are used to process XML (Extensible Markup Language) data.

The following XML functions are available:

e xmlattribute()
e xmlattributes/()
e xmlelement ()

e xmlelements ()

e xmltags ()

e xmltext ()

xmlattribute (), xmlattributes ()

Function
Extract the attributes of an XML tag.
Syntax
string xmlattribute (string xml, string tag, string attribute);
int xmlattributes(string &array[], string xml, string tag);
See also xmlelement (), xmltags (), xmltext ()

The xmlattribute function returns the value of the given attribute from the
given tag within the given xml code. If an attribute appears more than once
in the same tag, the value of its last occurrence is taken.

The xmlattributes function stores the names of all attributes from the
given tag within the given xml code in the array and returns the number of
attributes found. The order is not necessarily the same like in the

given xml code. If an attribute appears more than once in the same tag, its
name appears only once in the array.

The tag is given in the form of a path.

If the given xml code contains an error, the result of any XML function is
empty, and a warning dialog is presented to the user, giving information
about where in the ULP and XML code the error occurred. Note that the line
and column number within the XML code refers to the actual string given to
this function as the xml parameter.

Example

// String XML contains the following data:
//<root>

// <body abc="def" xyz="123">

// ...

// </body>

125

EAGLE User Language — Version 9.2.0

//</root>

string s[];
int n = xmlattributes (s, XML, "root/body");

// Result: { "abc", "xyz" }
string s = xmlattribute (XML, "root/body", "xyz");

// Result: "123"

xmlelement (), xmlelements ()

Function

Extract elements from an XML code.
Syntax

string xmlelement (string xml, string tagqg);

int xmlelements (string &array[], string xml, string tag);
See also xmltags (), xmlattribute (), xmltext ()

The xmlelement function returns the complete XML element of the

given tag within the given xml code. The result still contains the
element's outer XML tag, and can thus be used for further processing with
the other XML functions. Any whitespace within plain text parts of the
element is retained. The overall formatting of the XML tags within the
element and the order of element attributes may be different than the
original xml code, though.

If there is more than one occurrence of tag within xml, the first one will
be returned. Use xmlelements if you want to get all occurrences.

The xmlelements function works Jjust like xmlelement, but returns all
occurrences of elements with the given tag. The return value is the number
of elements stored in the array.

The tag is given in the form of a path.

If the given xml code contains an error, the result of any XML function is
empty, and a warning dialog is presented to the user, giving information
about where in the ULP and XML code the error occurred. Note that the line
and column number within the XML code refers to the actual string given to
this function as the xml parameter.

Example

// String XML contains the following data:
//<root>

// <body>

// <contents>

// <string>Some text 1</string>
// <any>anything 1</any>

// </contents>

// <contents>

// <string>Some text 2</string>
// <any>anything 2</any>

// </contents>

// <appendix>

// <string>Some text 3</string>
// </appendix>

126

EAGLE User Language — Version 9.2.0

// </body>
//</root>
//

string s = xmlelement (XML, "root/body/appendix") ;

// Result: " <appendix>\n <string>Some text 3</string>\n </appendix>\n"
string s[];
int n = xmlelements (s, XML, "root/body/contents");

// Result: { " <contents>\n <string>Some text 1</string>\n <any>anything
1</any>\n </contents>\n",

// " <contents>\n <string>Some text 2</string>\n <any>anything
2</any>\n </contents>\n"
// }

xmltags ()

Function

Extract the list of tag names within an XML code.
Syntax

int xmltags(string &array[], string xml, string tag);
See also xmlelement (), xmlattribute (), xmltext ()

The xmltags function returns the names of all the tags on the top level of
the given tag within the given xml code. The return value is the number of
tag names stored in the array.

Each tag name is returned only once, even if it appears several times in
the XML code.

The tag is given in the form of a path.

If the given xml code contains an error, the result of any XML function is
empty, and a warning dialog is presented to the user, giving information
about where in the ULP and XML code the error occurred. Note that the line
and column number within the XML code refers to the actual string given to
this function as the xml parameter.

Example

//String XML contains the following data:
//<root>

// <body>

// <contents>

// <string>Some text 1</string>
// <any>anything 1</any>

// </contents>

// <contents>

// <string>Some text 2</string>
// <any>anything 2</any>

// </contents>

// <appendix>

// <string>Some text 3</string>
// </appendix>

// </body>

//</root>

127

EAGLE User Language — Version 9.2.0

//

string s[];
int n = xmltags (s, XML, "root/body");

// Result: { "contents", "appendix" }
int n = xmltags(s, XML, "");

// Result: "root"

xmltext ()

Function

Extract the textual data of an XML element.
Syntax

string xmltext (string xml, string tag);
See also xmlelement (), xmlattribute (), xmltags/()

The xmltext function returns the textual data from the given tag within the
given xml code.

Any tags within the text are stripped, whitespace (including newline
characters) is retained.

The tag is given in the form of a path.

If the given xml code contains an error, the result of any XML function is
empty, and a warning dialog is presented to the user, giving information
about where in the ULP and XML code the error occurred. Note that the line
and column number within the XML code refers to the actual string given to
this function as the xml parameter.

Example

// String XML contains the following data:
//<root>

// <body>

// Some text.

// </body>

//</root>

//

string s = xmltext (XML, "root/body");

// Result: "\n Some text.\n "

Builtin Statements

Builtin statements are generally used to open a certain context in which
data structures or files can be accessed.

The general syntax of a builtin statement is

name (parameters) statement

128

EAGLE User Language — Version 9.2.0

where name is the name of the builtin statement, parameters stands for one
or more parameters, and statement is the code that will be executed inside
the context opened by the builtin statement.

Note that statement can be a compound statement, as in

board (B) {
B.elements (E) printf ("Element: %s\n", E.name);
B.Signals(S) printf("Signal: %s\n", S.name);
}

The following builtin statements are available:

e board()

e deviceset ()
e library()

e module ()

e output ()
e footprint() (new as of EAGLE 9.1)
e schematic/()
e sheet ()
e symbol ()
board ()
Function
Opens a board context.
Syntax

board (identifier) statement
See also schematic, library

The board statement opens a board context if the current editor window
contains a board drawing. A variable of type UL BOARD is created and is
given the name indicated by identifier.

Once the board context is successfully opened and a board variable has been
created, the statement is executed. Within the scope of the statement the
board variable can be accessed to retrieve further data from the board.

If the current editor window does not contain a board drawing, an error
message 1s given and the ULP is terminated.

Check if there is a board

By using the board statement without an argument you can check if the
current editor window contains a board drawing. In that case, board behaves
like an integer constant, returning 1 if there is a board drawing in the
current editor window, and O otherwise.

Accessing board from a schematic

If the current editor window contains a schematic drawing, you can still
access that schematic's board by preceding the board statement with the
prefix project, as in

project.board(B) { ... }

129

EAGLE User Language — Version 9.2.0

This will open a board context regardless whether the current editor window
there must be an editor
window containing that board somewhere on the desktop!

contains a board or a schematic drawing. However,

Example
if (board)
board (B) {

B.elements (E)
printf ("Element: %s\n", E.name);

}

deviceset ()

Function

Opens a device set context.
Syntax

deviceset (identifier) statement
See also footprint, symbol, library

The deviceset statement opens a device set context if the current editor
window contains a device drawing. A variable of type UL DEVICESET is

created and is given the name indicated by identifier.

Once the device set context is successfully opened and a device set

variable has been created, the statement is executed. Within the scope of
the statement the device set variable can be accessed to retrieve further

data from the device set.

If the current editor window does not contain a device drawing,

message 1s given and the ULP is terminated.

Check if there is a device set

By using the deviceset statement without an argument you can check if the

current editor window contains a device drawing.

case, deviceset behaves like an integer constant,
device drawing in the current editor window, and 0 otherwise.

Example

if (deviceset)
deviceset (D) {
D.gates (G)
printf ("Gate: %s\n", G.name);

}

library ()

Function
Opens a library context.
Syntax
library(identifier) statement
See also board, schematic, deviceset, footprint,

In that

returning 1 if there is a

symbol

130

EAGLE User Language — Version 9.2.0

The library statement opens a library context if the current editor window
contains a library drawing. A variable of type UL LIBRARY is created and is
given the name indicated by identifier.

Once the library context is successfully opened and a library variable has
been created, the statement is executed. Within the scope of

the statement the library variable can be accessed to retrieve further data
from the library.

If the current editor window does not contain a library drawing, an error
message 1s given and the ULP is terminated.

Check if there is a library

By using the library statement without an argument you can check if the
current editor window contains a library drawing. In that

case, library behaves like an integer constant, returning 1 if there is a
library drawing in the current editor window, and 0 otherwise.

Example

if (library)
library (L) {
L.devices (D)
printf ("Device: %s\n", D.name) ;

module ()

Function
Opens a module context.
Syntax
module (identifier) statement
See also board, library, schematic, sheet

#The module statement opens a module context if the current editor# #window
contains a module drawing. A variable of type# The module statement opens a
module context if in the editor window currently a module drawing is
edited. A variable of type UL MODULE is created and is given the name
indicated by identifier.

Once the module context is successfully opened and a module variable has
been created, the statement is executed. Within the scope of

the statement the module variable can be accessed to retrieve further data
from the module.

#If the current editor window does not contain a module drawing, an error#
#message is given and the ULP is terminated.# If in the editor window
currently no module drawing is edited, an error message is given and the
ULP is terminated.

Check if there is a module

By using the module statement without an argument you can check #if the
current editor window contains a module drawing. In that case,# if in the
editor window currently a module drawing is edited. In that

131

EAGLE User Language — Version 9.2.0

case, module behaves like an integer constant, returning 1 if there is a
module drawing in the current editor window, and 0 otherwise.

Example

if (module)
module (M) {
printf ("Module: %s\n", M.name) ;

}

output ()

Function

Opens an output file for subsequent printf () calls.
Syntax

output (string filename[, string mode]) statement

See also printf, fileerror

The output statement opens a file with the given filename and mode for
output through subsequent printf () calls. If the file has been successfully
opened, the statement is executed, and after that the file is closed.

If the file cannot be opened, an error message 1is given and execution of
the ULP is terminated.

By default the output file is written into the Project directory.

File Modes

The mode parameter defines how the output file is to be opened. If
no mode parameter is given, the default is "wt".

append to an existing file, or create a new file if it does not exist

create a new file (overwriting an existing file)

open file in text mode

open file in binary mode

delete this file when ending the EAGLE session (only works together with w)
force using this file name (normally *.brd, *.sch and *.1br are rejected)

L3 I A @ S o -)

Mode characters may appear in any order and combination. However, only the
last one of a and w or t and b, respectively, is significant. For example a
mode of "abtw" would open a file for textual write, which would be the same
as "wt".

Nested Output statements

output statements can be nested, as long as there are enough file handles
available, and provided that no two active output statements access
the same file.

Example

void PrintText (string s)

{

132

EAGLE User Language — Version 9.2.0

printf ("This also goes into the file: %s\n", s);
}
output ("file.txt", "wt") {

printf ("Directly printed\n");

PrintText ("via function call");

}

footprint (), new as of EAGLE
9.1

Function

Opens a footprint context.
Syntax

footprint (identifier) statement (new as of EAGLE 9.1)
See also library, deviceset, symbol

The footprint statement opens a package context if the current editor
window contains a package drawing. A variable of type UL FOOTPRINT is
created and is given the name indicated by identifier.

Note: the footprint statement is new in EAGLE 9.1. For backwards
compatibility with prior EAGLE versions, package is available as an alias.

Once the footprint context is successfully opened and a footprint variable
has been created, the statement is executed. Within the scope of

the statement the footprint variable can be accessed to retrieve further
data from the footprint.

If the current editor window does not contain a footprint drawing, an error
message 1s given and the ULP is terminated.

Check if there is a footprint

By using the footprint statement without an argument you can check if the
current editor window contains a footprint drawing. In that

case, footprint behaves like an integer constant, returning 1 if there is a
footprint drawing in the current editor window, and 0 otherwise.

Example

if (footprint)
footprint (F) {
F.contacts (C)
printf ("Contact: %s\n", C.name);

}

schematic ()

Function

Opens a schematic context.
Syntax

schematic (identifier) statement
See also board, library, module, sheet

133

EAGLE User Language — Version 9.2.0

The schematic statement opens a schematic context if the current editor
window contains a schematic drawing. A variable of type UL SCHEMATIC is
created and is given the name indicated by identifier.

Once the schematic context is successfully opened and a schematic variable
has been created, the statement is executed. Within the scope of

the statement the schematic variable can be accessed to retrieve further
data from the schematic.

If the current editor window does not contain a schematic drawing, an error
message 1s given and the ULP is terminated.

Check if there is a schematic

By using the schematic statement without an argument you can check if the
current editor window contains a schematic drawing. In that

case, schematic behaves like an integer constant, returning 1 if there is a
schematic drawing in the current editor window, and 0 otherwise.

Accessing schematic from a board

If the current editor window contains a board drawing, you can still access
that board's schematic by preceding the schematic statement with the
prefix project, as in

project.schematic(S) { ... }

This will open a schematic context regardless whether the current editor
window contains a schematic or a board drawing. However, there must be an
editor window containing that schematic somewhere on the desktop!

Access the current Sheet

Use the sheet statement to directly access the currently loaded sheet.

Access the current Module

Use the module statement to directly access the currently edited module.

Example

if (schematic)
schematic (S) {
S.parts (P)
printf ("Part: %$s\n", P.name);

}

sheet ()

Function

Opens a sheet context.
Syntax

sheet (identifier) statement
See also schematic

134

EAGLE User Language — Version 9.2.0

The sheet statement opens a sheet context if the current editor window
contains a sheet drawing. A variable of type UL SHEET is created and is
given the name indicated by identifier.

Once the sheet context is successfully opened and a sheet variable has been
created, the statement is executed. Within the scope of the statement the
sheet variable can be accessed to retrieve further data from the sheet.

If the current editor window does not contain a sheet drawing, an error
message 1s given and the ULP is terminated.

Check if there is a sheet

By using the sheet statement without an argument you can check if the
current editor window contains a sheet drawing. In that case, sheet behaves
like an integer constant, returning 1 if there is a sheet drawing in the
current editor window, and O otherwise.

Example
if (sheet)
sheet (S) {
S.instances (I)
printf ("Instance: %$s\n", I.name);

}
Function

Opens a symbol context.
Syntax

symbol (identifier) statement
See also library, deviceset, footprint

The symbol statement opens a symbol context if the current editor window
contains a symbol drawing. A variable of type UL SYMBOL is created and is
given the name indicated by identifier.

Once the symbol context is successfully opened and a symbol variable has
been created, the statement is executed. Within the scope of

the statement the symbol variable can be accessed to retrieve further data
from the symbol.

If the current editor window does not contain a symbol drawing, an error
message 1s given and the ULP is terminated.

Check if there is a symbol

By using the symbol statement without an argument you can check if the
current editor window contains a symbol drawing. In that

case, symbol behaves like an integer constant, returning 1 if there is a
symbol drawing in the current editor window, and 0 otherwise.

Example

135

EAGLE User Language — Version 9.2.0

if (symbol)
symbol (S) {
S.pins (P)
printf ("Pin: %s\n", P.name);

}

Dialogs

User Language Dialogs allow you to define your own frontend to a User
Language Program.

The following sections describe User Language Dialogs in detail:

Predefined Dialogs describes the ready to use standard dialogs

Dialog Objects defines the objects that can be used in a dialog

Layout Information explains how to define the location of objects within a dialog
Dialog Functions describes special functions for use with dialogs

A Complete Example shows a complete ULP with a data entry dialog

Predefined Dialogs

Predefined Dialogs implement the typical standard dialogs that are
frequently used for selecting file names or issuing error messages.

The following predefined dialogs are available:

e dlgDirectory ()
e dlgFileOpen ()

e dlgFileSave ()

e dlgMessageBox ()

See Dialog Objects for information on how to define your own complex user
dialogs.

dlgDirectory ()

Function
Displays a directory dialog.

Syntax
string dlgDirectory(string Title[, string Start])

Returns
The dlgDirectory function returns the full pathname of the selected
directory.
If the user has canceled the dialog, the result will be an empty
string.

See also dlgFileOpen

The dlgDirectory function displays a directory dialog from which the user
can select a directory.

Title will be used as the dialog's title.

136

EAGLE User Language — Version 9.2.0

If Start is not empty, it will be used as the starting point for
the dlgDirectory.

Example

string dirName;
dirName = dlgDirectory("Select a directory", "");

dlgFileOpen() , dlgFileSave ()

Function
Displays a file dialog.
Syntax
string dlgFileOpen(string Title[, string Start[, string Filter]])
string dlgFileSave(string Title[, string Start[, string Filter]])
Returns
The dlgFileOpen and dlgFileSave functions return the full pathname of
the selected file.
If the user has canceled the dialog, the result will be an empty
string.
See also dlgDirectory

The dlgFileOpen and dlgFileSave functions display a file dialog from which
the user can select a file.

Title will be used as the dialog's title.

If Start is not empty, it will be used as the starting point for the file
dialog. Otherwise the current directory will be used.

Only files matching Filter will be displayed. If Filter is empty, all files
will be displayed.

Filter can be either a simple wildcard (as in "*.brd"), a list of wildcards
(as in "*.bmp *.Jjpg") or may even contain descriptive text, as
in "Bitmap files (*.bmp)". If the "File type" combo box of the file dialog

shall contain several entries, they have to be separated by double
semicolons, as in "Bitmap files (*.bmp);;Other images (*.jpg *.png)".

Example

string fileName;
fileName = dlgFileOpen ("Select a file", "", "*.brd");

dlgMessageBox ()

Function

Displays a message box.
Syntax

int dlgMessageBox (string Message[, button list])
Returns

The dlgMessageBox function returns the index of the button the user
has selected.
The first button in button list has index O.

See also status/()

137

EAGLE User Language — Version 9.2.0

The dlgMessageBox function displays the given Message in a modal dialog and
waits until the user selects one of the buttons defined in button list.

If Message contains any HTML tags, the characters '<', '>' and '&' must be
given as "<", ">" and "&", respectively, if they shall be
displayed as such.

button list is an optional list of comma separated strings, which defines
the set of buttons that will be displayed at the bottom of the message box.
A maximum of three buttons can be defined. If no button list is given, it
defaults to "OK".

The first button in button list will become the default button (which will
be selected if the user hits ENTER), and the last button in the list will
become the "cancel button", which is selected if the user hits ESCape or
closes the message box. You can make a different button the default button
by starting its name with a '+', and you can make a different button the
cancel button by starting its name with a '-'. To start a button text with
an actual '+' or '-' it has to be escaped.

If a button text contains an '&', the character following the ampersand
will become a hotkey, and when the user hits the corresponding key, that
button will be selected. To have an actual '&' character in the text it has
to be escaped.

The message box can be given an icon by setting the first character
of Message to
';'" - for an Information
‘' - for a Warning
':'" - for an Error
If, however, the Message shall begin with one of these characters, it has
to be escaped.

On Mac OS X only the character ' : ' will actually result in showing an icon. All others
are ignored.

Example

if (dlgMessageBox ("!Are you sure?", "&Yes", "&No") == 0) {
// let's do it!
}

Dialog Objects

A User Language Dialog is built from the following Dialog Objects:
dlgCell a grid cell context

dlgCheckBox a checkbox

dlgComboBox a combo box selection field

dlgDialog the basic container of any dialog
dlgGridLayout a grid based layout context
dlgGroup a group field

dlgHBoxLayout a horizontal box layout context
dlgintEdit an integer entry field

dlgLabel a text label

dlgListBox a list box

138

EAGLE User Language — Version 9.2.0

dlgListView a list view
dlgPushButton a push button
dlgRadioButton a radio button

dlgRealEdit a real entry field
dlgSpacing a layout spacing object
dlgSpinBox a spin box selection field
dlgStretch a layout stretch object
dlgStringEdit a string entry field
dlgTabPage a tab page
dlgTabWidget a tab page container
dlgTextEdit a text entry field

dlgTextView a text viewer field
dlgVBoxLayout a vertical box layout context

dlgCell

Function
Defines a cell location within a grid layout context.
Syntax
dlgCell (int row, int column[, int row2, int column2]) statement

See also dlgGridLayout, dlgHBoxLayout, dlgVBoxLayout, Layout Information, A
Complete Example

The dlgCell statement defines the location of a cell within a grid layout
context.

The row and column indexes start at 0, so the upper left cell has the
index (0, 0).

With two parameters the dialog object defined by statement will be placed
in the single cell addresses by row and column. With four parameters the
dialog object will span over all cells from row/column to row2/column2.

By default a dlgCell contains a dlgHBoxLayout, so if the cell contains more
than one dialog object, they will be placed next to each other
horizontally.

Example

string Text;

dlgGridLayout {
dlgCell (0, 0) dlgLabel("Cell 0,0");
dlgCell (1, 2, 4, 7) dlgTextEdit (Text);
}

dlgCheckBox

Function
Defines a checkbox.
Syntax
dlgCheckBox (string Text, int &Checked) [statement]
See also dlgRadioButton, dlgGroup, Layout Information, A Complete Example

The dlgCheckBox statement defines a check box with the given Text.

139

EAGLE User Language — Version 9.2.0

If Text contains an '&', the character following the ampersand will become
a hotkey, and when the user hits Alt+hotkey, the checkbox will be toggled.
To have an actual '&' character in the text it has to be escaped.

dlgCheckBox is mainly used within a dlgGroup, but can also be used
otherwise.

All check boxes within the same dialog must

have different Checked variables!

If the user checks a dlgCheckBox, the associated Checked variable is set
to 1, otherwise it is set to 0. The initial value of Checked defines
whether a checkbox is initially checked. If Checked is not equal to 0, the
checkbox is initially checked.

The optional statement is executed every time the dlgCheckBox is toggled.

Example

int mirror = 0;
int rotate = 1;
int flip = 0;

dlgGroup ("Orientation™) {
dlgCheckBox ("&Mirror", mirror);
dlgCheckBox ("&Rotate", rotate);
dlgCheckBox ("&Flip", flip):;
}

dlgComboBox

Function
Defines a combo box selection field.
Syntax
dlgComboBox (string arrayl[], int &Selected) [statement]

See also dlglListBox, dlgLabel, Layout Information, A Complete Example

The dlgComboBox statement defines a combo box selection field with the
contents of the given array.

Selected reflects the index of the selected combo box entry. The first
entry has index 0.

Each element of array defines the contents of one entry in the combo box.
None of the strings in array may be empty (if there is an empty string, all
strings after and including that one will be dropped).

The optional statement is executed whenever the selection in

the dlgComboBox changes.

Before the statement is executed, all variables that have been used with
dialog objects are updated to their current values, and any changes made to
these variables inside the statement will be reflected in the dialog when
the statement returns.

If the initial value of Selected is outside the range of the array indexes,
it is set to O.

Example

140

EAGLE User Language — Version 9.2.0

string Colors[] = { "red", "green", "blue", "yellow" };

int Selected = 2; // initially selects "blue"

dlgComboBox (Colors, Selected) dlgMessageBox ("You have selected " +
Colors[Selected]) ;

dlgDialog

Function
Executes a User Language Dialog.
Syntax
int dlgDialog(string Title) block ;
Returns
The dlgDialog function returns an integer value that can be given a
user defined meaning through a call to the dlgAccept () function.
If the dialog is simply closed, the return value will be -1.
See
also dlgGridLayout, dlgHBoxLayout, dlgVBoxLayout, dlgAccept, dlgReset, dlgR
eject, A Complete Example

The dlgDialog function executes the dialog defined by block. This is the
only dialog object that actually is a User Language builtin function.
Therefore it can be used anywhere where a function call is allowed.

The block normally contains only other dialog objects, but it is also
possible to use other User Language statements, for example to
conditionally add objects to the dialog (see the second example below) .

By default a dlgDialog contains a dlgVBoxLayout, so a simple dialog doesn't
have to worry about the layout.

A dlgDhialog should at some point contain a call to the dlgAccept () function
in order to allow the user to close the dialog and accept its contents.

If all you need is a simple message box or file dialog you might want to
use one of the Predefined Dialogs instead.

Examples

int Result = dlgDialog("Hello") {
dlgLabel ("Hello world");
dlgPushButton ("+OK") dlgAccept ()
}i

int haveButton = 1

dlgDialog ("Test")
dlgLabel ("Start"
if (haveButton)

dlgPushButton ("Here") dlgAccept():;

’

{
)
i

dlgGridLayout

Function

Opens a grid layout context.
Syntax

dlgGridLayout statement

141

EAGLE User Language — Version 9.2.0

See also dlgCell, dlgHBoxLayout, dlgVBoxLayout, Layout Information, A
Complete Example

The dlgGridLayout statement opens a grid layout context.

The only dialog object that can be used directly in statement is dlgCell,
which defines the location of a particular dialog object within the grid
layout.

The row and column indexes start at 0, so the upper left cell has the
index (0, 0).

The number of rows and columns is automatically extended according to the
location of dialog objects that are defined within the grid layout context,
so you don't have to explicitly define the number of rows and columns.

Example

dlgGridLayout {
dlgCell (0, 0) dlgLabel ("Row 0/Col 0");
dlgCell (1, 0) dlgLabel ("Row 1/Col 0");
dlgCell (0, 1) dlgLabel ("Row 0/Col 1");
dlgCell (1, 1) dlgLabel ("Row 1/Col 1");

}

dlgGroup

Function
Defines a group field.
Syntax
dlgGroup (string Title) statement
See also dlgCheckBox, dlgRadioButton, Layout Information, A Complete
Example

The dlgGroup statement defines a group with the given Title.

By default a dlgGroup contains a dlgVBoxLayout, so a simple group doesn't
have to worry about the layout.

dlgGroup is mainly used to contain a set of radio buttons or check boxes,
but may as well contain any other objects in its statement.
Radio buttons within a dlgGroup are numbered starting with O.

Example

int align = 1;

dlgGroup ("Alignment") {
dlgRadioButton ("&Top", align);
dlgRadioButton ("&Center", align);
dlgRadioButton ("&Bottom", align);
}

dlgHBoxLayout

Function
Opens a horizontal box layout context.

142

EAGLE User Language — Version 9.2.0

Syntax

dlgHBoxLayout statement
See also dlgGridLayout, dlgVBoxLayout, Layout Information, A Complete
Example

The dlgHBoxLayout statement opens a horizontal box layout context for the
given statement.

Example

dlgHBoxLayout (
dlgLabel ("Box 1");
dlgLabel ("Box 2");
dlgLabel ("Box 3");
}

dlgIntEdit

Function
Defines an integer entry field.
Syntax
dlgIntEdit (int &Value, int Min, int Max)
See also dlgRealEdit, dlgStringEdit, dlgLabel, Layout Information, A
Complete Example

The dlgIntEdit statement defines an integer entry field with the
given Value.

If Value is initially outside the range defined by Min and Max it will be
limited to these values.

Example

int Value = 42;

dlgHBoxLayout (
dlgLabel ("Enter a &Number between 0 and 99");
dlgIntEdit (Value, 0, 99);
}

dlgLabel

Function
Defines a text label.
Syntax
dlgLabel (string Text [, int Update])

See also Layout Information, A Complete Example, dlgRedisplay ()

The dlgLabel statement defines a label with the given Text.

Text can be either a string literal, as in "Hello", or a string variable.
If Text contains any HTML tags, the characters '<', '>' and '&' must be
given as "<", ">" and "&", respectively, if they shall be

displayed as such.

143

EAGLE User Language — Version 9.2.0

External hyperlinks in the Text will be opened with the appropriate
application program.

If the Update parameter is not 0 and Text is a string variable, its
contents can be modified in the statement of, e.g., a dlgPushButton, and
the label will be automatically updated. This, of course, is only useful
if Text is a dedicated string variable (not, e.g., the loop variable of
a for statement).

If Text contains an '&', and the object following the label can have the
keyboard focus, the character following the ampersand will become a hotkey,
and when the user hits Alt+hotkey, the focus will go to the object that was
defined immediately following the dlgLabel. To have an actual '&' character
in the text it has to be escaped.

Example

string OS = "Windows";

dlgHBoxLayout (
dlgLabel (0OS, 1);
dlgPushButton ("&Change 0S") { OS = "Linux"; }
}

dlgListBox

Function
Defines a list box selection field.
Syntax
dlgListBox (string array[], int &Selected) [statement]

See also dlgComboBox, dlgListView, dlgSelectionChanged, dlgLabel, Layout
Information, A Complete Example

The dlgListBox statement defines a list box selection field with the
contents of the given array.

Selected reflects the index of the selected list box entry. The first entry
has index 0.

Each element of array defines the contents of one line in the list box.
None of the strings in array may be empty (if there is an empty string, all
strings after and including that one will be dropped).

The optional statement is executed whenever the user double clicks on an
entry of the dlgListBox (see dlgSelectionChanged for information on how to
have the statement called when only the selection in the list changes).
Before the statement is executed, all variables that have been used with
dialog objects are updated to their current values, and any changes made to
these variables inside the statement will be reflected in the dialog when
the statement returns.

If the initial value of Selected is outside the range of the array indexes,
no entry will be selected.

Example

string Colors[] = { "red", "green", "blue", "yellow" };

144

EAGLE User Language — Version 9.2.0

int Selected = 2; // initially selects "blue"
dlgListBox (Colors, Selected) dlgMessageBox ("You have selected " +
Colors[Selected]) ;

dlgListView

Function
Defines a multi column list view selection field.

Syntax
dlgListView (string Headers, string array[], int &Selected[, int
&Sort]) [statement |

See also dlgListBox, dlgSelectionChanged, dlgLabel, Layout Information, A
Complete Example

The dlgListView statement defines a multi column list view selection field
with the contents of the given array.

Headers is the tab separated list of column headers.

Selected reflects the index of the selected list view entry in

the array (the sequence in which the entries are actually displayed may be
different, because the contents of a dlgListView can be sorted by the
various columns). The first entry has index 0.

If no particular entry shall be initially selected, Selected should be
initialized to -1. If it is set to -2, the first item according to the
current sort column is made current. If no view entry has been selected, -1
is returned.

Sort defines which column should be used to sort the list view. The
leftmost column is numbered 1. The sign of this parameter defines the
direction in which to sort (positive values sort in ascending order).

If Sort is 0 or outside the wvalid number of columns, no sorting will be
done. The returned value of Sort reflects the column and sort mode selected
by the user by clicking on the list column headers. By

default dlgListView sorts by the first column, in ascending order.

Each element of array defines the contents of one line in the list view,
and must contain tab separated values. If there are fewer values in an
element of array than there are entries in the Headers string the remaining
fields will be empty. If there are more values in an element of array than
there are entries in the Headers string the superfluous elements will be
silently dropped. None of the strings in array may be empty (if there is an
empty string, all strings after and including that one will be dropped).

A list entry that contains line feeds ('\n') will be displayed in several
lines accordingly.

The optional statement is executed whenever the user double clicks on an
entry of the dlgListView (see dlgSelectionChanged for information on how to
have the statement called when only the selection in the list changes).
Before the statement is executed, all variables that have been used with
dialog objects are updated to their current values, and any changes made to
these variables inside the statement will be reflected in the dialog when
the statement returns.

If the initial value of Selected is outside the range of the array indexes,
no entry will be selected.

145

EAGLE User Language — Version 9.2.0

If Headers is an empty string, the first element of the array is used as
the header string. Consequently the index of the first entry is then 1.

The contents of a dlgListView can be sorted by any column by clicking on
that column's header. Columns can also be swapped by "click&dragging" a
column header. Note that none of these changes will have any effect on the
contents of the array. If the contents shall be sorted alphanumerically

a numeric string[] array can be used.

Example

string Colors[] = { "red\tThe color RED", "green\tThe color GREEN",
"blue\tThe color BLUE" };

int Selected = 0; // initially selects "red"

dlgListView ("Name\tDescription", Colors, Selected) dlgMessageBox ("You have
selected " + Colors([Selected]);

dlgPushButton

Function
Defines a push button.
Syntax
dlgPushButton (string Text) statement
See also Layout Information, Dialog Functions, A Complete Example

The dlgPushButton statement defines a push button with the given Text.

If Text contains an '&', the character following the ampersand will become
a hotkey, and when the user hits Alt+hotkey, the button will be selected.
To have an actual '&' character in the text it has to be escaped.

If Text starts with a '+' character, this button will become the default
button, which will be selected if the user hits ENTER.

If Text starts with a '-' character, this button will become the cancel
button, which will be selected if the user closes the dialog.

CAUTION: Make sure that the statement of such a marked cancel button
contains a call to dlgReject()! Otherwise the user may be unable to close
the dialog at all!

To have an actual '+' or '-' character as the first character of the text
it has to be escaped.

If the user selects a dlgPushButton, the given statement is executed.
Before the statement is executed, all variables that have been used with
dialog objects are updated to their current values, and any changes made to
these variables inside the statement will be reflected in the dialog when
the statement returns.

Example

int defaultWidth = 10;

int defaultHeight = 20;

int width = 5;

int height = 7;

dlgPushButton ("&Reset defaults") {
width = defaultWidth;
height = defaultHeight;

}

146

EAGLE User Language — Version 9.2.0

dlgPushButton ("+&Accept") dlgAccept()

dlgPushButton ("-Cancel") { if (dlgMessageBox ("Are you sure?", "Yes", "No")
== 0) dlgReject(); }
dlgRadioButton
Function
Defines a radio button.
Syntax
dlgRadioButton(string Text, int &Selected) [statement]

See also dlgCheckBox, dlgGroup, Layout Information, A Complete Example

The dlgRadioButton statement defines a radio button with the given Text.

If Text contains an '&', the character following the ampersand will become
a hotkey, and when the user hits Alt+hotkey, the button will be selected.
To have an actual '&' character in the text it has to be escaped.

dlgRadioButton can only be used within a dlgGroup.
All radio buttons within the same group must use
the same Selected variable!

If the user selects a dlgRadioButton, the index of that button within

the dlgGroup is stored in the Selected variable.

The initial value of Selected defines which radio button is initially
selected. If Selected is outside the valid range for this group, no radio
button will be selected. In order to get the correct radio button
selection, Selected must be set before the first dlgRadioButton is defined,
and must not be modified between adding subsequent radio buttons. Otherwise
it is undefined which (if any) radio button will be selected.

The optional statement is executed every time the dlgRadioButton is
selected.

Example

int align = 1;

dlgGroup ("Alignment") {
dlgRadioButton ("&Top", align);
dlgRadioButton ("&Center", align);
dlgRadioButton ("&Bottom", align);
}

dlgRealEdit

Function
Defines a real entry field.
Syntax
dlgRealEdit (real &Value, real Min, real Max)
See also dlgIntEdit, dlgStringEdit, dlgLabel, Layout Information, A
Complete Example

The dlgRealEdit statement defines a real entry field with the given Value.

If Value is initially outside the range defined by Min and Max it will be
limited to these values.

147

EAGLE User Language — Version 9.2.0

Example

real Value = 1.4142;

dlgHBoxLayout {
dlgLabel ("Enter a &Number between 0 and 99");
dlgRealEdit (Value, 0.0, 99.0);
}

dlgSpacing

Function
Defines additional space in a box layout context.
Syntax
dlgSpacing (int Size)
See also dlgHBoxLayout, dlgVBoxLayout, dlgStretch, Layout Information, A
Complete Example

The dlgSpacing statement defines additional space in a vertical or
horizontal box layout context.

Size defines the number of pixels of the additional space.

Example

dlgVBoxLayout ({
dlgLabel ("Label 1");
dlgSpacing (40) ;
dlgLabel ("Label 2");
}

dlgSpinBox

Function
Defines a spin box selection field.
Syntax
dlgSpinBox (int &Value, int Min, int Max)
See also dlgIntEdit, dlgLabel, Layout Information, A Complete Example

The dlgSpinBox statement defines a spin box entry field with the
given Value.

If Value is initially outside the range defined by Min and Max it will be
limited to these values.

Example

int Value = 42;
dlgHBoxLayout {
dlgLabel ("&Select value");
dlgSpinBox (Value, 0, 99);
}

dlgStretch

148

EAGLE User Language — Version 9.2.0

Function
Defines an empty stretchable space in a box layout context.
Syntax
dlgStretch (int Factor)
See also dlgHBoxLayout, dlgVBoxLayout, dlgSpacing, Layout Information, A
Complete Example

The dlgStretch statement defines an empty stretchable space in a vertical
or horizontal box layout context.

Factor defines the stretch factor of the space.

Example

dlgHBoxLayout (
dlgStretch(l) ;
dlgPushButton (
dlgPushButton (
}

dlgStringEdit

Function

Defines a string entry field.
Syntax

dlgStringEdit (string &Text[, string &History[][, int Sizell])
See also dlgRealkdit, dlgIntEdit, dlgTextEdit, dlgLabel, Layout
Information, A Complete Example

"+0OK") { dlgAccept(); 1};
"Cancel") { dlgReject(); };

The dlgStringEdit statement defines a one line text entry field with the
given Text.

If History is given, the strings the user has entered over time are stored
in that string array. The entry field then has a button that allows the
user to select from previously entered strings. If a Size greater than zero
is given, only at most that number of strings are stored in the array.

If History contains data when the dialog is newly opened, that data will be
used to initialize the history. The most recently entered user input is
stored at index 0.

None of the strings in History may be empty (if there is an empty string,
all strings after and including that one will be dropped).

Example

string Name = "Linus";
dlgHBoxLayout (
dlgLabel ("Enter &Name");
dlgStringEdit (Name) ;
}

dlgTabPage

Function
Defines a tab page.
Syntax

149

EAGLE User Language — Version 9.2.0

dlgTabPage (string Title) statement
See also dlgTabWidget, Layout Information, A Complete Example

The dlgTabPage statement defines a tab page with the given Title containing
the given statement.

If Title contains an '&', the character following the ampersand will become
a hotkey, and when the user hits Alt+hotkey, this tab page will be opened.
To have an actual '&' character in the text it has to be escaped.

Tab pages can only be used within a dlgTabWidget.

By default a dlgTabPage contains a dlgVBoxLayout, so a simple tab page
doesn't have to worry about the layout.

Example

dlgTabWidget {
dlgTabPage ("Tab &1") {
dlgLabel ("This is page 1");
}
dlgTabPage ("Tab &2") {
dlgLabel ("This is page 2");
}

dlgTabWidget

Function
Defines a container for tab pages.
Syntax
dlgTabWidget { tabpages }
dlgTabWidget (int &Index) { tabpages }
See also dlgTabPage, Layout Information, A Complete Example

The dlgTabWidget defines a container for a set of tab pages.

tabpages must be a sequence of one or more dlgTabPage objects. There must
be no other dialog objects in this sequence.

Index defines which tab should be selected initially. If this selection
changes the variable Index is set accordingly. The first page has
index 0 (independent of its title).

Examples

dlgTabWidget {
dlgTabPage ("Tab &1") {
dlgLabel ("This is page 1");
}
dlgTabPage ("Tab &2") {
dlgLabel ("This is page 2");
}
}
dlgDialog ("test")
{

150

EAGLE User Language — Version 9.2.0

int TabNr = 0;
int CheckBoxValuel];
dlgTabWidget (TabNr) {
for (int i = 0; 1 <= 9; i++) {
string s;
sprintf (s, "%d", 1i);
dlgTabPage ("Tab " + s) {
dlgLabel ("This is page " + s);
dlgCheckBox (s, CheckBoxValue[i]) {
string Msg;
sprintf (Msg, "Value #%d: %d\n", TabNr,
CheckBoxValue [TabNr]) ;
dlgMessageBox (Msqg) ;
t

i

dlgTextEdit

Function
Defines a multiline text entry field.
Syntax
dlgTextEdit (string &Text)
See also dlgStringEdit, dlgTextView, dlgLabel, Layout Information, A
Complete Example

The dlgTextEdit statement defines a multiline text entry field with the
given Text.

The lines in the Text have to be delimited by a newline character ('\n').
Any whitespace characters at the end of the lines contained in Text will be
removed, and upon return there will be no whitespace characters at the end
of the lines. Empty lines at the end of the text will be removed entirely.

Example

string Text = "This is some text.\nLine 2\nLine 3";
dlgVBoxLayout (

dlgLabel ("&Edit the text");

dlgTextEdit (Text) ;

}

dlgTextView

Function
Defines a multiline text viewer field.
Syntax
dlgTextView (string Text)
dlgTextView (string Text, string &Link) statement
See also dlgTextEkEdit, dlgLabel, Layout Information, A Complete Example

The dlgTextView statement defines a multiline text viewer field with the
given Text.

The Text may contain HTML tags.

151

EAGLE User Language — Version 9.2.0

External hyperlinks in the Text will be opened with the appropriate
application program.

If Link is given and the Text contains hyperlinks, statement will be
executed every time the user clicks on a hyperlink, with the value

of Link set to whatever the tag defines as the value of href.
If, after the execution of statement, the Link variable is not empty, the
default handling of hyperlinks will take place. This is also the case

if Link contains some text before dlgTextView is opened, which allows for
an initial scrolling to a given position. If a Link is given, external
hyperlinks will not be opened.

Example

string Text = "This is some text.\nLine 2\nLine 3";
dlgVBoxLayout {

dlgLabel ("&View the text");

dlgTextView (Text) ;

}

dlgVBoxLayout

Function
Opens a vertical box layout context.
Syntax
dlgVBoxLayout statement
See also dlgGridLayout, dlgHBoxLayout, Layout Information, A Complete
Example

The dlgVBoxLayout statement opens a vertical box layout context for the
given statement.

By default a dlgDialog contains a dlgVBoxLayout, so a simple dialog doesn't
have to worry about the layout.

Example

dlgVBoxLayout {
dlgLabel ("Box 1");
dlgLabel ("Box 2");
dlgLabel ("Box 3");
}

Layout Information

All objects within a User Language Dialog a placed inside a layout context.

Layout contexts can be either grid, horizontal or vertical.

Grid Layout Context

Objects in a grid layout context must specify the grid coordinates of the
cell or cells into which they shall be placed. To place a text label at row
5, column 2, you would write

152

EAGLE User Language — Version 9.2.0

dlgGridLayout {
dlgCell (5, 2) dlgLabel ("Text");
}
If the object shall span over more than one cell you need to specify the
coordinates of the starting cell and the ending cell. To place a group that
extends from row 1, column 2 up to row 3, column 5, you would write
dlgGridLayout {
dlgCell (1, 2, 3, 5) dlgGroup("Title") {
/...
}

Horizontal Layout Context

Objects in a horizontal layout context are placed left to right.

The special objects dlgStretch and dlgSpacing can be used to further refine
the distribution of the available space.

To define two buttons that are pushed all the way to the right edge of the
dialog, you would write

dlgHBoxLayout {
dlgStretch (1) ;
dlgPushButton (
dlgPushButton (
}

"+0OK") dlgAccept () ;
"Cancel") dlgReject();

Vertical Layout Context

Objects in a vertical layout context follow the same rules as those in a
horizontal layout context, except that they are placed top to bottom.

Mixing Layout Contexts

Vertical, horizontal and grid layout contexts can be mixed to create the
desired layout structure of a dialog. See the Complete Example for a
demonstration of this.

Dialog Functions

The following functions can be used with User Language Dialogs:

dlgAccept() closes the dialog and accepts its contents

dlgRedisplay() immediately redisplays the dialog after changes to any values

dlgReset() resets all dialog objects to their initial values

digReject() closes the dialog and rejects its contents

dleSelectionChanged() tells whether the current selection in a dlgListView or dlgListBox
has changed

dlgAccept ()

Function
Closes the dialog and accepts its contents.

153

EAGLE User Language — Version 9.2.0

Syntax
void dlgAccept ([int Result]);
See also dlgReject, dlgDialog, A Complete Example

The dlgAccept function causes the dlgDialog to be closed and return after
the current statement sequence has been completed.

Any changes the user has made to the dialog values will be accepted and are
copied into the variables that have been given when the dialog objects were
defined.

The optional Result is the value that will be returned by the dialog.
Typically this should be a positive integer value. If no value is given, it
defaults to 1.

Note that dlgAccept () does return to the normal program execution, so in a
sequence like

dlgPushButton ("OK") {
dlgAccept () ;
dlgMessageBox ("Accepting!") ;
}
the statement after dlgAccept() will still be executed!

Example

int Result = dlgDialog("Test") {
dlgPushButton ("+O0K") dlgAccept (42) ;
dlgPushButton ("Cancel") dlgReject();
}i

dlgRedisplay ()

Function

Redisplays the dialog after changing wvalues.
Syntax

void dlgRedisplay(void) ;
See also dlgReset, dlgDialog, A Complete Example

The dlgRedisplay function can be called to immediately refresh
the dlgbDialog after changes have been made to the variables used when
defining the dialog objects.

You only need to call dlgRedisplay() if you want the dialog to be refreshed
while still executing program code. In the example below the status is
changed to "Running..." and dlgRedisplay () has to be called to make this
change take effect before the "program action" is performed. After the
final status change to "Finished." there is no need to call dlgRedisplay(),
since all dialog objects are automatically updated after leaving the
statement.

Example

string Status = "Idle";
int Result = dlgDialog("Test") {

154

EAGLE User Language — Version 9.2.0

dlgLabel (Status, 1); // note the 'l' to tell the label to be
updated!
dlgPushButton ("+O0K") dlgAccept (42) ;
dlgPushButton ("Cancel") dlgReject();
dlgPushButton ("Run") {
Status = "Running...";
dlgRedisplay () ;
// some program action here...
Status = "Finished.";
t
ti

dlgReset ()

Function

Resets all dialog objects to their initial wvalues.
Syntax

void dlgReset (void);
See also dlgReject, dlgDialog, A Complete Example

The dlgReset function copies the initial values back into all dialog
objects of the current dlgDialog.

Any changes the user has made to the dialog values will be discarded.

Calling dlgReject () implies a call to dlgReset().

Example

int Number = 1;
int Result = dlgDialog("Test") {
dlgIntEdit (Number) ;

dlgPushButton ("+O0K") dlgAccept (42) ;
dlgPushButton ("Cancel") dlgReject();
dlgPushButton ("Reset") dlgReset () ;

}i

dlgReject ()

Function
Closes the dialog and rejects its contents.
Syntax
void dlgReject ([int Result]);
See also dlgAccept, dlgReset, dlgDialog, A Complete Example

The dlgReject function causes the dlgDialog to be closed and return after
the current statement sequence has been completed.

Any changes the user has made to the dialog values will be discarded. The
variables that have been given when the dialog objects were defined will be
reset to their original values when the dialog returns.

The optional Result is the value that will be returned by the dialog.
Typically this should be 0 or a negative integer value. If no value is
given, it defaults to O.

155

EAGLE User Language — Version 9.2.0

Note that dlgReject () does return to the normal program execution, so in a
sequence like

dlgPushButton ("Cancel"™) {
dlgReject () ;
dlgMessageBox ("Rejecting!") ;
}
the statement after dlgReject () will still be executed!

Calling dlgReject () implies a call to dlgReset().

Example

int Result = dlgDialog("Test") ({
dlgPushButton ("+0OK") dlgAccept (42) ;
dlgPushButton ("Cancel") dlgReject();
}i

dlgSelectionChanged ()

Function
Tells whether the current selection in a dlgListView or dlgListBox
has changed.

Syntax
int dlgSelectionChanged (void) ;

Returns
The dlgSelectionChanged function returns a nonzero value if only the
selection in the list has changed.

See also dlgListView, dlgListBox

The dlgSelectionChanged function can be used in a list context to determine
whether the statement of the dlgListView or dlgListBox was called because
the user double clicked on an item, or whether only the current selection
in the list has changed.

If the statement of a dlgListView or dlgListBox doesn't contain any call
to dlgSelectionChanged, that statement is only executed when the user
double clicks on an item in the list. However, if a ULP needs to react on
changes to the current selection in the list, it can

call dlgSelectionChanged within the list's statement. This causes the
statement to also be called if the current selection in the list changes.

If a list item is initially selected when the dialog is opened and the
list's statement contains a call to dlgSelectionChanged, the statement is
executed with dlgSelectionChanged returning true in order to indicate the
initial change from "no selection" to an actual selection. Any later
programmatical changes to the strings or the selection of the list will not
trigger an automatic execution of the list's statement. This is important
to remember in case the current list item controls another dialog object,
for instance a dlgTextView that shows an extended representation of the
currently selected item.

Example

string Colors[] = { "red\tThe color RED", "green\tThe color GREEN",
"blue\tThe color BLUE" };
int Selected = 0; // initially selects "red"

156

EAGLE User Language — Version 9.2.0

string MyColor;
dlgLabel (MyColor, 1);
dlgListView ("Name\tDescription", Colors, Selected) {
if (dlgSelectionChanged())
MyColor = Colors([Selected];
else
dlgMessageBox ("You have chosen " + Colors[Selected]);

Escape Character

Some characters have special meanings in button or label texts, so they
need to be escaped if they shall appear literally.

To do this you need to prepend the character with a backslash, as in

dlgLabel ("Miller \\& Co.");
This will result in "Miller & Co." displayed in the dialog.

Note that there are actually two backslash characters here, since this line
will first go through the User Language parser, which will strip the first
backslash.

A Complete Example

Here's a complete example of a User Language Dialog.
int hor = 1;
int ver = 1;
string fileName;
int Result = dlgDialog("Enter Parameters") {
dlgHBoxLayout {
dlgStretch (1) ;
dlgLabel ("This is a simple dialog");
dlgStretch (1) ;
}
dlgHBoxLayout {
dlgGroup ("Horizontal™) {
dlgRadioButton ("&Top", hor);
dlgRadioButton ("&Center", hor);
dlgRadioButton ("&Bottom", hor);
}
dlgGroup ("Vertical") {
dlgRadioButton ("&Left", ver);
dlgRadioButton ("C&enter", ver);
dlgRadioButton ("&Right", wver);
}
}
dlgHBoxLayout {
dlgLabel ("File &name:");
dlgStringEdit (fileName) ;
dlgPushButton ("Bro&wse") {
fileName = dlgFileOpen ("Select a file", fileName)
}
}
dlgGridLayout {
dlgCell (0, 0) dlgLabel ("Row 0/Col 0O");
dlgCell (1, 0) dlgLabel ("Row 1/Col 0O");
dlgCell (0, 1) dlgLabel ("Row 0/Col 1");

157

EAGLE User Language — Version 9.2.0

dlgCell (1, 1) dlgLabel ("Row 1/Col 1");
}

dlgSpacing (10) ;

dlgHBoxLayout {
dlgStretch (1) ;
dlgPushButton (
dlgPushButton (
}

i

Supported HTML tags

EAGLE supports a subset of the tags used to format HTML pages. This can be
used to format the text of several User Language Dialog objects, in
the #usage directive or in the description of library objects.

"+0K") dlgAccept () ;
"Cancel") dlgReject();

Text i1s considered to be HTML if the first line contains a tag. If this is
not the case, and you want the text to be formatted, you need to enclose
the entire text in the <html>...</html> tag.

The following table lists all supported HTML tags and their available
attributes:

Tag Description

<html>...</html> An HTML document.
The body of an HTML document. It understands the
following attribute

<body>...</body> e bgcolor - The background color, for
example bgcolor="yellow" Of bgcolor="#0000FF".
This attribute works only within a digTextView.

<h1>..</h1> A top-level heading.
<h2>...</h2> A sub-level heading.
<h3>...</h3> A sub-sub-level heading.
A left-aligned paragraph. Adjust the alignment with
<p>..</p> the align attribute. Possible values
are left, right and center.
<center>...</center> A centered paragraph.

<blockquote>...</blockquote> An indented paragraph, useful for quotes.

An un-ordered list. You can also pass a type argument to
.. define the bullet style. The default is type=disc, other types

are circle and square.

An ordered list. You can also pass a type argument to define
... the enumeration label style. The default is type="1", other
types are "a" and "A".

A list item. This tag can only be used within the context
of ol or ul.

For larger chunks of code. Whitespaces in the contents are
preserved. For small bits of code, use the inline-style code.
<a>.. An anchor or link. It understands the following attributes:

..

<pre>...</pre>

158

EAGLE User Language — Version 9.2.0

...
...
<i>..</1>

...
<u>..</u>
<big>...</big>
<small>...</small>

<code>...</code>

<tt>...</tt>

...

<img...>

<hr>

e href - The reference target as in You can also
specify an additional anchor within the specified
target document, for example [f you want to
link to a local file that has a blank in its name, you

need to prepend the file name with file:, asin <a
href="file:/path with

blanks/target.html">....
e name - The anchor name, as in

Emphasized (same as <i>...</i>).

Strong (same as . . .).

Italic font style.

Bold font style.

Underlined font style.

A larger font size.

A smaller font size.

Indicates Code. (same as <tt>...</tt>. For larger chunks
of code, use the block-tag pre.

Typewriter font style.

Customizes the font size, family and text color. The tag
understands the following attributes:

e color - The text color, for
example color="red" or color="#FF0000".

e size - The logical size of the font. Logical sizes 1 to
7 are supported. The value may either be absolute, for
example size=3, or relative like size=-2. In the
latter case, the sizes are simply added.

e face - The family of the font, for
example face=times.

An image. This tag understands the following attributes:

e src - The image name, for example .

The URL of the image may be external, as in .

e width - The width of the image. If the image does not
fit to the specified size, it will be scaled
automatically.

e height - The height of the image.

e align - Determines where the image is placed. Per
default, an image is placed inline, just like a normal
character. Specify left or right to place the image
at the respective side.

A horizonal line.

159

EAGLE User Language — Version 9.2.0

<nobr>...</nobr>

<table>...</table>

<tr>...</tr>

<td>...</td>

<th>...</th>

<author>...</author>
<dl>..</dl>
<dt>...</dt>
<dd>...</dd>

Tag Meaning
< <

> >

& &

 non-breaking space

ä a
ö 0
ü u

A line break.

No break. Prevents word wrap.

A table definition. The default table is frameless. Specify the
boolean attribute border in order to get a frame. Other
attributes are:

e Dbgcolor - The background color.

e width - The table width. This is either absolute in
pixels or relative in percent of the column width, for
example width=80%.

e border - The width of the table border. The default is
0 (= no border).

e cellspacing - Additional space around the table
cells. The default is 2.

e cellpadding - Additional space around the contents
of table cells. Default is 1.

A table row. Can only be used within table. Understands the
attribute

e Dbgcolor - The background color.

A table data cell. Can only be used within tr. Understands
the attributes

e Dbgcolor - The background color.

e width - The cell width. This is either absolute in
pixels or relative in percent of the entire table width,
for example width=50%.

e colspan - Defines how many columns this cell spans.
The default is 1.

e rowspan - Defines how many rows this cell spans.
The default is 1.

e align - Alignment, possible values
are left, right and center. The default is left-
aligned.

A table header cell. Like td but defaults to center-alignment
and a bold font.

Marks the author of this text.

A definition list.

A definition tag. Can only be used within d1.

Definition data. Can only be used within d1.

160

EAGLE User Language — Version 9.2.0

Ä
Ö
Ü
ß
©
°
µ
±
"

°CO O

H =

161

