
Introduction Overview Inside the new library Bibliography

MusicXML Library Version 2
A toolbox to support the MusicXML format.

D.Fober, S.Letz, Y.Orlarey
{fober, letz, orlarey}@grame.fr

Grame - Research Lab.
Centre national de création musicale

FR - Lyon

May 2008

Introduction Overview Inside the new library Bibliography

Summary

1 Introduction
The MusicXML format
Issues in the library design

2 Overview
Differences to version 1
What remains unchanged?

3 Inside the new library
Class design
DTDs as Documentation
Browsing the memory representation
Main files
DTDs Analysis

4 Bibliography

Introduction Overview Inside the new library Bibliography

The MusicXML format

The MusicXML format represents common Western musical
notation from the 17th century onwards. It is an xml format that
organizes the music into a header followed by the core music
data. The core music data may be organized as partwise or
timewise data:

partwise data are organized into parts containing
measures,
timewise data are organized into measures containing
parts.

The music notation complexity is reflected by the significant
number of MusicXML elements: 343 elements are defined by
the version 2.0 of the format.

More details and DTDs on http://www.recordare.com/

Introduction Overview Inside the new library Bibliography

Issues in the library design

The main issues in designing a C++ library to support the
format are related to the significant the number of MusicXML
elements.

1 cost of describing all the MusicXML elements,
2 design of an adequate and efficient memory

representation,
3 avoiding additional complexity to the MusicXML format,
4 easiness to maintain and to update to new versions of the

format.

The first version of the MusicXML library was quite good on
points 2 and 3, but rather weak on points 1 and 4.

Introduction Overview Inside the new library Bibliography

libmusicxml v.2: what’s new?

supports the MusicXML format version 2,
easy to upgrade to new versions of the MusicXML format
from the DTDs,
adheres strictly to the MusicXML DTDs: each element has
a corresponding C++ class,
designed using a single homogeneous xmlelement class
and automatic typing using templates,
provides STL iterators to browse the memory
representation,
is not compatible with libmusicxml version 1.xx.

The main point is the simplified design: 4 classes instead of
150 to build a MusicXML memory representation.

Introduction Overview Inside the new library Bibliography

libmusicxml v.2: what remains unchanged?

automatic memory management using smart pointers,
support of the visitor mechanism,
provides rolled and unrolled browsing,
provides previous visitors (musicxml2guido, midivisitor,
transposition...)

Introduction Overview Inside the new library Bibliography

Memory representation

The MusicXML format is represented by:

a single xmlelement class

simple methods to query an element

derived into as many types as
MusicXML elements using templates

organized into a tree

xmlelement

type
name
value

xmlattribute

name
value

attributes
0..n

Introduction Overview Inside the new library Bibliography

Memory representation

The MusicXML format is represented by:

a single xmlelement class

simple methods to query an element

derived into as many types as
MusicXML elements using templates

organized into a tree

homogeneous design leads to
simplicity.

Introduction Overview Inside the new library Bibliography

Memory representation

The MusicXML format is represented by:

a single xmlelement class

simple methods to query an element

derived into as many types as
MusicXML elements using templates

organized into a tree

xmlelement

name

attributes

getType()

getName()

getValue()

getAttribute(name)

getAttributeValue(name)

type

value

Introduction Overview Inside the new library Bibliography

Memory representation

The MusicXML format is represented by:

a single xmlelement class

simple methods to query an element

derived into as many types as
MusicXML elements using templates

organized into a tree

Makes the DTDs usable as the
library documentation:
e.g.
measure->getAttributeValue("number")

Introduction Overview Inside the new library Bibliography

Memory representation

The MusicXML format is represented by:

a single xmlelement class

simple methods to query an element

derived into as many types as
MusicXML elements using templates

organized into a tree
template <int elt>

class musicxml

xmlelement

type
name
value

attributes

Introduction Overview Inside the new library Bibliography

Memory representation

The MusicXML format is represented by:

a single xmlelement class

simple methods to query an element

derived into as many types as
MusicXML elements using templates

organized into a tree

Allows the visitor mechanism to
operate

Introduction Overview Inside the new library Bibliography

Memory representation

The MusicXML format is represented by:

a single xmlelement class

simple methods to query an element

derived into as many types as
MusicXML elements using templates

organized into a tree

ctree

xmlelement

ctree

xmlelement

ctree

xmlelement

ctree

xmlelement

ctree

xmlelement

ctree

xmlelement

Introduction Overview Inside the new library Bibliography

Memory representation

The MusicXML format is represented by:

a single xmlelement class

simple methods to query an element

derived into as many types as
MusicXML elements using templates

organized into a tree support STL iterators

Introduction Overview Inside the new library Bibliography

MusicXML DTDs as documentation

types are consistently
derived from the MusicXML
element names
attributes can be retrieved
using their MusicXML
names
browsing the memory
representation is like
reading the MusicXML file

<!ELEMENT part-name>
=> class: S_part_name

=> constant: k_part_name

<!ATTLIST measure
number CDATA #REQUIRED

...

measure->getAttributeValue("number")

measure->getAttributeIntValue("number",default)

Elements and attributes names and
values are available as strings but also
support automatic conversion to numeric
types.

Supports xml comments and processing
instruction as well.

Introduction Overview Inside the new library Bibliography

MusicXML DTDs as documentation

types are consistently
derived from the MusicXML
element names
attributes can be retrieved
using their MusicXML
names
browsing the memory
representation is like
reading the MusicXML file

<!ELEMENT part-name>
=> class: S_part_name

=> constant: k_part_name

<!ATTLIST measure
number CDATA #REQUIRED

...

measure->getAttributeValue("number")

measure->getAttributeIntValue("number",default)

Elements and attributes names and
values are available as strings but also
support automatic conversion to numeric
types.

Supports xml comments and processing
instruction as well.

Introduction Overview Inside the new library Bibliography

MusicXML DTDs as documentation

types are consistently
derived from the MusicXML
element names
attributes can be retrieved
using their MusicXML
names
browsing the memory
representation is like
reading the MusicXML file

<!ELEMENT part-name>
=> class: S_part_name

=> constant: k_part_name

<!ATTLIST measure
number CDATA #REQUIRED

...

measure->getAttributeValue("number")

measure->getAttributeIntValue("number",default)

Elements and attributes names and
values are available as strings but also
support automatic conversion to numeric
types.

Supports xml comments and processing
instruction as well.

Introduction Overview Inside the new library Bibliography

Browsing the memory representation

supports the acyclic
visitor pattern

supports STL iterators

Count using a visitor

class countnotes : public v i s i t o r <S_note>
{

public :
i n t fCount ;

countnotes () : fCount (0) { }
v i r t u a l ~countnotes () { }
void v i s i t S t a r t (S_note& e l t) { fCount ++; }

} ;

Count using iterators and STL

struct countnotes {
bool operator () (const Sxmlelement e l t) const

return e l t −>getType () == k_note ;
} ;

countnotes p ;
i n t count = c o u n t _ i f (e l t −>begin () , e l t −>end () , p) ;

Introduction Overview Inside the new library Bibliography

Browsing the memory representation

supports the acyclic
visitor pattern

supports STL iterators

Count using a visitor

class countnotes : public v i s i t o r <S_note>
{

public :
i n t fCount ;

countnotes () : fCount (0) { }
v i r t u a l ~countnotes () { }
void v i s i t S t a r t (S_note& e l t) { fCount ++; }

} ;

Count using iterators and STL

struct countnotes {
bool operator () (const Sxmlelement e l t) const

return e l t −>getType () == k_note ;
} ;

countnotes p ;
i n t count = c o u n t _ i f (e l t −>begin () , e l t −>end () , p) ;

Introduction Overview Inside the new library Bibliography

Main files

Files, folders Purpose
xml.h, types.h, ctree.h MusicXML memory representation

factory.h to generate MusicXML elements
typedefs.h, elements.h types and constant definitions

the visitors folder many visitors...
usable as sample code as well

WARNING!
The following files are automatically generated by the DTDs
analyser and should not be modified:

elements.h, typedefs.h, factory.cpp

Introduction Overview Inside the new library Bibliography

Main files

Files, folders Purpose
xml.h, types.h, ctree.h MusicXML memory representation

factory.h to generate MusicXML elements
typedefs.h, elements.h types and constant definitions

the visitors folder many visitors...
usable as sample code as well

WARNING!
The following files are automatically generated by the DTDs
analyser and should not be modified:

elements.h, typedefs.h, factory.cpp

Introduction Overview Inside the new library Bibliography

DTDs Analysis
A fast way to update to new version of the MusicXML format.

The MusicXML DTDs are automatically analyzed to generate
source code, types and constants.

’-’ are replaced with ’_’ in MusicXML elements or attribute
names to comply to the C/C++ identifiers lexical definition.

a makefile and a shell script are used for analysis and
generation
templates are provided in the template folder
generates types (typedefs.h), constants (elements.h)
and source code (factory.cpp)

Introduction Overview Inside the new library Bibliography

For Further Reading

MusicXML
The MusicXML home page.
http://www.recordare.com/xml.html

M. Good.
The virtual score, MusicXML for notation and analysis.
In W. B. Hewlett and E. Selfridge-Field, editors, Computing in Musicology,
volume 12, pages 113–124. MIT Press, 2001.

A. Alexandrescu.
Modern C++ Design: Generic Programming and Design Patterns Applied.
Addison-Wesley, 2001.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

	Introduction
	The MusicXML format
	Issues in the library design

	Overview
	Differences to version 1
	What remains unchanged?

	Inside the new library
	Class design
	DTDs as Documentation
	Browsing the memory representation
	Main files
	DTDs Analysis

	Bibliography

